11 resultados para sn 2011fe
em CentAUR: Central Archive University of Reading - UK
Resumo:
DiGrignard reagents of the form XMg(CH2)(n)MgX, where X = Br or I and n = 6, 8, 10 or 12, were allowed to react with PhSnCl3 to produce highly cross-linked Ph-Sn polymeric networks. The Sn-H moiety was incorporated into these insoluble network polymers by treatment with Br-2 and NaBH4. Excellent accessibility of the Sn-H was displayed by these solvent penetrable but insoluble networks, giving them higher Sn-H loadings than all previously reported supported reagents. These reagents were totally regenerable in NaBH4 for radical assisted organic synthesis and no detectable leaching of the Sn into solution was observed during these reactions.
Resumo:
1,2-sn-Diacylglycerols (DAGs) are activators of protein kinase C (PKQ, which is involved in the regulation of colonic mucosal proliferation. Extracellular DAG has been shown to stimulate the growth of cancer cell lines in vitro and may therefore play an important role in tumor promotion. DAG has been detected in human fecal extracts and is thought to be of microbial origin. Hitherto, no attempts have been made to identify the predominant fecal bacterial species involved in its production. We therefore used anaerobic batch culture systems to determine whether fecal bacteria could utilize phosphatidylcholine (0.5% [wt/vol]) to produce DAG. Production was found to be dependent upon the presence of the substrate and was enhanced in the presence of high concentrations of deoxycholate (5 and 10 mM) in the growth medium. Moreover, its production increased with the pH, and large inter- and intraindividual variations were observed between cultures seeded with inocula from different individuals. Clostridia and Escherichia coli multiplied in the fermentation systems, indicating their involvement in phosphatidylcholine metabolism. On the other hand, there was a significant decrease in the number of Bifidobacterium spp. in the presence of phosphatidylcholine. Pure-culture experiments showed that 10 of the 12 strains yielding the highest DAG levels (>50 nmol/ml) were isolated from batch culture enrichments run at pH 8.5. We found that the strains capable of producing large amounts of DAG were predominantly Clostridium bifermentans (8 of 12), followed by Escherichia coli (2 of 12). Interestingly, one DAG-producing strain was Bifidobacterium infantis, which is often considered a beneficial gut microorganism. Our results have provided further evidence that fecal bacteria can produce DAG and that specific bacterial groups are involved in this process. Future strategies to reduce DAG formation in the gut should target these species.
Resumo:
Aims: To investigate the production of the tumour promoter 1,2-sn-diacylglycerol (DAG) by a human gut isolate of Bifidobacterium longum biovar infantis. Methods and Results: Bifidobacterium longum biovar infantis was grown in vitro using anaerobic static batch cultures in the presence of phosphatidylcholine (PC) and trans-galactooligosaccharides (TOS). Production of DAG was found to be dependent upon the presence of PC, while TOS had a reducing effect. Considerable differences in morphology, growth and metabolic end products from the micro-organism were observed under the different culture conditions. Conclusions: Our results have provided evidence that B. longum biovar infantis can produce DAG in vitro and that a prebiotic exerted a reducing effect upon this production. Significance and Impact of the Study: The results presented in this study demonstrate an ability of ostensibly beneficial member of the colonic environment to produce unwanted compounds under certain conditions. Therefore, it may be important that a combination of substrates and other factors are assessed when studying the behaviour of any bacterial group or species, especially when designing the dietary interventions.
Resumo:
New Sn-based materials have been deposited and characterised in terms of their optical and mechanical properties and compared with existing cadmium-based thin films that currently find wide spread use in the optoelectronic and semiconductor industries.
Resumo:
Aerial oxidation of the novel homocyclic tetratin species [{SnAr2}3SnArBr] (1) [1] (Ar C6H3Et2-2,6) affords the tritin heterocycle [O{Sn(C6H3Et2-2,6)2}3] (2), which has been crystallographically characterised; 2 is the first reported oxatristannacyclobutane, and the first heterocyclic tin species having both tintin and tinheteroatom bonds.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
Chemical substitution in Co3Sn2-xInxS2 (0 # x # 2) enables tuning of the Fermi level within narrow bands of Co d-states. This results in a compositionally induced double metal–semiconductor–metal transition and manipulation of the thermoelectric power factor. The maximum power factor (14 mW cm-1 K-2) is found for x ¼ 0.85, which corresponds to ZT z 0.2 at 300 K.
Resumo:
X-ray resonant scattering has been exploited to investigate the crystal structure of the AB1.5Te1.5 phases (A = Co, Rh, Ir; B = Ge, Sn). Analysis of the diffraction data reveals that CoGe1.5Te1.5 and ASn1.5Te1.5 adopt a rhombohedral skutterudite-related structure, containing diamond-shape B2Te2 rings, in which the B and Te atoms are ordered and trans to each other. Anion ordering is however incomplete, and with increasing the size of both cations and anions, the degree of anion ordering decreases. By contrast, the diffraction data of IrGe1.5Te1.5 are consistent with an almost statistical distribution of the anions over the available sites, although some ordered domains may be present. The thermoelectric properties of these materials are discussed in the light of these results.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20–27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.