20 resultados para photoinduced refractive index changing spectrum
em CentAUR: Central Archive University of Reading - UK
Resumo:
Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.
Resumo:
The mechanisms of refractive index change in poly(methyl methacrylate) by frequency doubled femtosecond laser pulses are investigated. It is demonstrated that positive refractive index modificaton can be caused by a combination of depolymerization and crosslinking.
Resumo:
We discuss some novel technologies that enable the implementation of shearing interferometry at the terahertz part of the spectrum. Possible applications include the direct measurement of lens parameters, the measurement of refractive index of materials that are transparent to terahertz frequencies, determination of homogeneity of samples, measurement of optical distortions and the non-contact evaluation of thermal expansion coefficient of materials buried inside media that are opaque to optical or infrared frequencies but transparent to THz frequencies. The introduction of a shear to a Gaussian free-space propagating terahertz beam in a controlled manner also makes possible a range of new encoding and optical signal processing modalities.
Resumo:
New algorithms and microcomputer-programs for generating original multilayer designs (and printing a spectral graph) from refractive-index input are presented. The programs are characterised TSHEBYSHEV, HERPIN, MULTILAYER-SPECTRUM and have originated new designs of narrow-stopband, non-polarizing edge, and Tshebyshev optical filter. Computation procedure is an exact synthesis (so far that is possible) numerical refinement not having been needed.
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.
Resumo:
We present a flexible framework to calculate the optical properties of atmospheric aerosols at a given relative humidity based on their composition and size distribution. The similarity of this framework to climate model parameterisations allows rapid and extensive sensitivity tests of the impact of uncertainties in data or of new measurements on climate relevant aerosol properties. The data collected by the FAAM BAe-146 aircraft during the EUCAARI-LONGREX and VOCALS-REx campaigns have been used in a closure study to analyse the agreement between calculated and measured aerosol optical properties for two very different aerosol types. The agreement achieved for the EUCAARI-LONGREX flights is within the measurement uncertainties for both scattering and absorption. However, there is poor agreement between the calculated and the measured scattering for the VOCALS-REx flights. The high concentration of sulphate, which is a scattering aerosol with no absorption in the visible spectrum, made the absorption measurements during VOCALS-REx unreliable, and thus no closure study was possible for the absorption. The calculated hygroscopic scattering growth factor overestimates the measured values during EUCAARI-LONGREX and VOCALS-REx by ∼30% and ∼20%, respectively. We have also tested the sensitivity of the calculated aerosol optical properties to the uncertainties in the refractive indices, the hygroscopic growth factors and the aerosol size distribution. The largest source of uncertainty in the calculated scattering is the aerosol size distribution (∼35%), followed by the assumed hygroscopic growth factor for organic aerosol (∼15%), while the predominant source of uncertainty in the calculated absorption is the refractive index of organic aerosol (28–60%), although we would expect the refractive index of black carbon to be important for aerosol with a higher black carbon fraction.
Resumo:
North African dust is important for climate through its direct radiative effect on solar and terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrain model simulations, with the ultimate aim of being able to quantify the deposition of iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m^2 g^-1 , 1.14 m^2 g^-1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53--0.0005i,1.53--0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.
Resumo:
Background/aims: Scant consideration has been given to the variation in structure of the human amniotic membrane (AM) at source or to the significance such differences might have on its clinical transparency. Therefore, we applied our experience of quantifying corneal transparency to AM. Methods: Following elective caesarean, AM from areas of the fetal sac distal and proximal (ie, adjacent) to the placenta was compared with freeze-dried AM. The transmission of light through the AM samples was quantified spectrophotometrically; also, tissue thickness was measured by light microscopy and refractive index by refractometry. Results: Freeze-dried and freeze-thawed AM samples distal and proximal to the placenta differed significantly in thickness, percentage transmission of visible light and refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the highest refractive index. Using the direct summation of fields method to predict transparency from an equivalent thickness of corneal tissue, AM was found to be up to 85% as transparent as human cornea. Conclusion: When preparing AM for ocular surface reconstruction within the visual field, consideration should be given to its original location from within the fetal sac and its method of preservation, as either can influence corneal transparency.
Resumo:
The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.
Resumo:
Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 mum, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these A TR imaging approaches for cardiovascular medicine and biomedical applications. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.
Resumo:
Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.
Resumo:
The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52µm is described. In order to achieve the optimum performance, the optical constants of PbTe, Ge and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap Eg and infinite refractive index n for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.
Resumo:
We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 µm assuming a fixed erosol optical depth of 0.5 by 10–15 %, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution f the aerosol and find that this is unimportant in determining simulated radiance at 0.55 µm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50 - 70 %.
Resumo:
Simultaneous scintillometer measurements at multiple wavelengths (pairing visible or infrared with millimetre or radio waves) have the potential to provide estimates of path-averaged surface fluxes of sensible and latent heat. Traditionally, the equations to deduce fluxes from measurements of the refractive index structure parameter at the two wavelengths have been formulated in terms of absolute humidity. Here, it is shown that formulation in terms of specific humidity has several advantages. Specific humidity satisfies the requirement for a conserved variable in similarity theory and inherently accounts for density effects misapportioned through the use of absolute humidity. The validity and interpretation of both formulations are assessed and the analogy with open-path infrared gas analyser density corrections is discussed. Original derivations using absolute humidity to represent the influence of water vapour are shown to misrepresent the latent heat flux. The errors in the flux, which depend on the Bowen ratio (larger for drier conditions), may be of the order of 10%. The sensible heat flux is shown to remain unchanged. It is also verified that use of a single scintillometer at optical wavelengths is essentially unaffected by these new formulations. Where it may not be possible to reprocess two-wavelength results, a density correction to the latent heat flux is proposed for scintillometry, which can be applied retrospectively to reduce the error.