57 resultados para moving object classification

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a solution for predicting moving/moving and moving/static collisions of objects within a virtual environment. Feasible prediction in real-time virtual worlds can be obtained by encompassing moving objects within a sphere and static objects within a convex polygon. Fast solutions are then attainable by describing the movement of objects parametrically in time as a polynomial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is now established that certain cognitive processes such as categorisation are tightly linked to the concepts encoded in language. Recent studies have shown that bilinguals with languages that differ in their concepts may show a shift in their cognition towards the L2 pattern primarily as a function of their L2 proficiency. This research has so far focused predominantly on L2 users who started learning the L2 in childhood or early puberty. The current study asks whether similar effects can be found in adult L2 learners. English speakers of L2 Japanese were given an object classification task involving real physical objects, and an online classification task involving artificial novel objects. Results showed a shift towards the L2 pattern, indicating that some degree of cognitive plasticity exists even when a second language is acquired later in life. These results have implications for theories of L2 acquisition and bilingualism, and contribute towards our understanding of the nature of the relationship between language and cognition in the L2 user’s mind.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work on object classification preferences shows that speakers of languages that lack morphological plural marking (like Yucatec and Japanese) display a tendency to match objects by common material, while speakers of languages with morphological plural marking (like English) display a tendency to match objects by common shape. The present paper compares categorisation preferences of English and Japanese speakers with those of Greek speakers. Greek resembles English in that it has morphological plural marking, but contrasts with English in that mass nouns typically do not resist pluralization. Results show that all groups distinguish significantly between countable objects and non-countable substances, but the degree to which they do this differs and conforms to language-specific grammatical patterns. It is argued that the effects of grammatical structure on categorisation preferences are finer-grained than earlier studies have assumed, thus providing a more precise account of the extent and nature of linguistic influence on cognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies have demonstrated that there is a tight link between grammatical concepts and cognitive preferences in monolingual speakers (Lucy 1992, Lucy & Gaskins 2003, Imai & Gentner 1997, Imai & Mazuka 2003). Recent research has also shown that bilinguals with languages that differ in their concepts may shift their cognitive preferences as a function of their proficiency (Athanasopoulos, 2006) or cultural immersion (Cook, Bassetti, Kasai, Sasaki, & Takahashi, 2006). The current short paper assesses the relative impact of each of these variables, and furthermore asks whether bilinguals alternate between two distinct cognitive representations of language-specific concepts depending on the language used in the experiment. Results from an object classification task showed that Japanese–English bilinguals shifted their behaviour towards the second language (L2) pattern primarily as a function of their L2 proficiency, while cultural immersion and language of instruction played a minimal role. These findings suggest that acquisition of novel grammatical categories leads to cognitive restructuring in the bilingual mind and have implications for the relationship between language and cognitive processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many tasks, such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based 3D reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding 3D coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer’s perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for 3D reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of 3D vision, more so, I argue, than the case of a static binocular observer.