15 resultados para broadband ultrasound attenuation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Phyto-oestrogens have been associated with a decreased risk for osteoporosis, but results from intervention and observational studies in Western countries have been inconsistent. In the present study, we investigated the association between habitual phyto-oestrogen intake and broadband ultrasound attenuation (BUA) of the calcanaeum as a marker of bone density. We collected 7 d records of diet, medical history and demographic and anthropometric data from participants (aged 45–75 years) in the European Prospective Investigation into Cancer-Norfolk study. Phyto-oestrogen (biochanin A, daidzein, formononetin; genistein, glycitein; matairesinol; secoisolariciresinol; enterolactone; equol) intake was determined using a newly developed food composition database. Bone density was assessed using BUA of the calcanaeum. Associations between bone density and phyto-oestrogen intake were investigated in 2580 postmenopausal women who were not on hormone replacement therapy and 4973 men. Median intake of total phyto-oestrogens was 876 (interquartile range 412) μg/d in postmenopausal women and 1212 (interquartile range 604) μg/d in men. The non-soya isoflavones formononetin and biochanin A were marginally significant or significantly associated with BUA in postmenopausal women (β = 1·2; P < 0·1) and men (β = 1·2; P < 0·05), respectively; enterolignans and equol were positively associated with bone density in postmenopausal women, but this association became non-significant when dietary Ca was added to the model. In the lowest quintile of Ca intake, soya isoflavones were positively associated with bone density in postmenopausal women (β = 1·4; P < 0·1). The present results therefore suggest that non-soya isoflavones are associated with bone density independent of Ca, whereas the association with soya or soya isoflavones is affected by dietary Ca.
Resumo:
In the United Kingdom and in fact throughout Europe, the chosen standard for digital terrestrial television is the European Telecommunications Standards Institute (ETSI) ETN 300 744 also known as Digital Video Broadcasting - Terrestrial (DVB-T). The modulation method under this standard was chosen to be Orthogonal Frequency Division Multiplex (0FD4 because of the apparent inherent capability for withstanding the effects of multipath. Within the DVB-T standard, the addition of pilot tones was included that can be used for many applications such as channel impulse response estimation or local oscillator phase and frequency offset estimation. This paper demonstrates a technique for an estimation of the relative path attenuation of a single multipath signal that can be used as a simple firmware update for a commercial set-top box. This technique can be used to help eliminate the effects of multipath(1).
Resumo:
The results from a range of different signal processing schemes used for the further processing of THz transients are contrasted. The performance of different classifiers after adopting these schemes are also discussed.
Resumo:
The two major applications of microwave remote sensors are radiometer and radar. Because of its importance and the nature of the application, much research has been made on the various aspects of the radar. This paper will focus on the various aspects of the radiometer from a design point of view and the Low Noise Amplifier will be designed and implemented. The paper is based on a study in radio Frequency Communications engineering and understanding of electronic and RF circuits. Some research study about the radiometer and practical implementation of Low Noise Amplifier for Radiometer will be the main focus of this paper. Basically the paper is divided into two parts. In the first part some background study about the radiometer will be carried out and commonly used types of radiometer will be discussed. In the second part LNA for the radiometer will be designed.
Resumo:
Evolutionary synthesis methods, as originally described by Dobrowolski, have been shown in previous literature to be an effective method of obtaining anti-reflection coating designs. To make this method even more effective, the combination of a good starting design, the best suited thin-film materials, a realistic optimization target function and a non-gradient optimization method are used in an algorithm written for a PC. Several broadband anti-reflection designs obtained by this new design method are given as examples of its usefulness.
Resumo:
A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
Land surface albedo is dependent on atmospheric state and hence is difficult to validate. Over the UK persistent cloud cover and land cover heterogeneity at moderate (km-scale) spatial resolution can also complicate comparison of field-measured albedo with that derived from instruments such as the Moderate Resolution Imaging Spectrometer (MODIS). A practical method of comparing moderate resolution satellite-derived albedo with ground-based measurements over an agricultural site in the UK is presented. Point measurements of albedo made on the ground are scaled up to the MODIS resolution (1 km) through reflectance data obtained at a range of spatial scales. The point measurements of albedo agreed in magnitude with MODIS values over the test site to within a few per cent, despite problems such as persistent cloud cover and the difficulties of comparing measurements made during different years. Albedo values derived from airborne and field-measured data were generally lower than the corresponding satellite-derived values. This is thought to be due to assumptions made regarding the ratio of direct to diffuse illumination used when calculating albedo from reflectance. Measurements of albedo calculated for specific times fitted closely to the trajectories of temporal albedo derived from both Systeme pour l'Observation de la Terre (SPOT) Vegetation (VGT) and MODIS instruments.
Resumo:
We present a new technique for correcting errors in radar estimates of rainfall due to attenuation which is based on the fact that any attenuating target will itself emit, and that this emission can be detected by the increased noise level in the radar receiver. The technique is being installed on the UK operational network, and for the first time, allows radome attenuation to be monitored using the increased noise at the higher beam elevations. This attenuation has a large azimuthal dependence but for an old radome can be up to 4 dB for rainfall rates of just 2–4 mm/h. This effect has been neglected in the past, but may be responsible for significant errors in rainfall estimates and in radar calibrations using gauges. The extra noise at low radar elevations provides an estimate of the total path integrated attenuation of nearby storms; this total attenuation can then be used as a constraint for gate-by-gate or polarimetric correction algorithms.
Resumo:
We discuss the modeling of dielectric responses for an electromagnetically excited network of capacitors and resistors using a systems identification framework. Standard models that assume integral order dynamics are augmented to incorporate fractional order dynamics. This enables us to relate more faithfully the modeled responses to those reported in the Dielectrics literature.
Resumo:
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α∗ is a function of wavelength and chlorophyll, and three wavebands if α∗ is a fixed value.