5 resultados para animal testing replacement

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycopolymer hydrogels capable of mimicking mucosal tissue in mucoadhesion testing have been designed. Liquid formulations containing mucoadhesive polymers were found to be retained on these tissues to the same extent as ex vivo gastric mucosa, when using a dynamic method of assessing mucoadhesion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corneal tissue engineering has improved dramatically over recent years. It is now possible to apply these technological advancements to the development of superior in vitro ocular surface models to reduce animal testing. We aim to show the effect different substrates can have on the viability of expanded corneal epithelial cells and that those which more accurately mimic the stromal surface provide the most protection against toxic assault. Compressed collagen gel as a substrate for the expansion of a human epithelial cell line was compared against two well-known substrates for modeling the ocular surface (polycarbonate membrane and conventional collagen gel). Cells were expanded over 10 days at which point cell stratification, cell number and expression of junctional proteins were assessed by electron microscopy, immunohistochemistry and RT-PCR. The effect of increasing concentrations of sodium lauryl sulphate on epithelial cell viability was quantified by MTT assay. Results showed improvement in terms of stratification, cell number and tight junction expression in human epithelial cells expanded upon either the polycarbonate membrane or compressed collagen gel when compared to a the use of a conventional collagen gel. However, cell viability was significantly higher in cells expanded upon the compressed collagen gel. We conclude that the more naturalistic composition and mechanical properties of compressed collagen gels produces a more robust corneal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sixty cattle farmers in England were questioned about the costs associated with premovement testing for bovine tuberculosis (TB). On average, the farmers had premovement tested 2-45 times in the previous 12 months, but the majority had tested only once. An average of 28.6 animals were tested on each occasion, but there were wide variations. The average farm labour costs were (sic)4.00 per animal tested, veterinary costs were (sic)4.33 and other costs were (sic)0.51, giving a total cost of (sic)8.84, but there were wide variations between farms, and many incurred costs of more than (sic)20 per animal. A majority of the farmers also cited disruption to the farm business or missed market opportunities as costs, but few could estimate their financial cost. Most of the farmers thought that premovement testing was a cost burden on their business, and over half thought It was not an effective policy to control bovine TB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs) harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs) within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.