34 resultados para acute stress induced cardiomyopathy

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The levels of zinc in the brain are directly affected by dietary zinc and deficiency has been associated with alcohol withdrawal seizures, excitotoxicity, impaired learning and memory and an accelerated rate of dysfunction in aged brain. Although zinc is essential for a healthy nervous system, high concentrations of zinc are neurotoxic, thus it is important to identify the most effective forms of zinc for treatment of conditions of the central nervous system. Accumulating evidence suggests that zinc-histidine complex (Zn(HiS)(2)) has greater biological potency and enhanced bioavailability compared with other zinc salts and also has antioxidant potential. Therefore, in this study we investigated the ability of zinc-histidine to protect cultured cortical neurons against hydrogen peroxide-induced damage. Pre-treating neurons for 18h with subtoxic concentrations of zinc-histidine (5-25 muM) improved neuronal viability and strongly inhibited hydrogen peroxide-induced (75 muM, 30 min) cell damage as assessed by MTT turnover and morphological analysis 24 It later. Low concentrations of zinc-histidine were more neuroprotective than zinc chloride. There was evidence of an anti-apoptotic mechanism of action as zinc-histidine inhibited hydrogen peroxide-induced caspase-3 activation and c-jun-N-terminal kinase phosphorylation. In summary, zinc supplementation with zinc-histidine protects cultured neurons against oxidative insults and inhibits apoptosis which suggests that zinc-histidine may be beneficial in the treatment of diseases of the CNS associated with zinc deficiency. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive chlorine species such as hypochlorous acid ( HOCl) are cytotoxic oxidants generated by activated neutrophils at the sites of chronic inflammation. Since mitochondria are key mediators of apoptosis and necrosis, we hypothesized that mitochondriotropic antioxidants could limit HOCl-mediated intracellular oxidative injury to human fetal liver cells, preserve mitochondrial function, and prevent cell death. In this current study, we show that recently developed mitochondria-targeted antioxidants ( MitoQ and SS31) significantly protected against HOCl-induced mitochondrial damage and cell death at concentrations >= 25 nM. Our study highlights the potential application of mitochondria-specific targeted antioxidants for the prevention of cellular dysfunction and cell death under conditions of chlorinative stress, as occurs during chronic inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rate coefficients for reactions of nitrate radicals (NO3) with the anthropogenic emissions 2-methylpent-2-ene, (Z)-3-methylpent-2-ene.. ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3 +/- 1.1) x 10(-12), (9.3 +/- 3.2) x 10(-12), (1.7 +/- 1.3) x 10(-12) and (9.4 + 2.7) x 10(-17) cm(3) molecule(-1) s(-1). We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, (Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), (Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO3. The rate coefficients were determined to be (1.53 +/- 0.23) x 10(-13) and (1.39 +/- 0.19) x 10(-14) cm(3) molecule(-1) s(-1) for reactions of NO3 with (Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N2O5 as source of NO3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO2 allowed us to determine the rate coefficients for the N2O5 reactions to be (5.0 +/- 2.8) x 10(-19) cm(3) molecule(-1) s(-1) for (Z)-pent-2-en-1-ol, and (9.1 +/- 5.8) x 10(-19) cm(3) molecule(-1) s(-1) for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ventricular myocytes are exposed to various pathologically important cell stresses in vivo. In vitro, extreme stresses (sorbitol-induced hyperosmotic shock in the presence or absence of okadaic acid, and anisomycin) were applied to ventricular myocytes cultured from neonatal rat hearts to induce a robust activation of the 46 and 54 kDa stress-activated protein kinases (SAPKs). These activities were increased in nuclear extracts of cells in the absence of any net import of SAPK protein. Phosphorylation of ATF2 and c-Jun was increased as shown by the appearance of reduced-mobility species on SDS/PAGE, which were sensitive to treatment with protein phosphatase 2A. Hyperosmotic shock and anisomycin had no effect on the abundance of ATF2. In contrast, cell stresses induced a greater than 10-fold increase in total c-Jun immunoreactivity detected on Western blots with antibody to c-Jun (KM-1). Cycloheximide did not inhibit this increase, which we conclude represents phosphorylation of c-Jun. This conclusion was supported by use of a c-Jun(phospho-Ser-73) antibody. Immunostaining of cells also showed increases in nuclear phospho-c-Jun in response to hyperosmotic stress. Severe stress (hyperosmotic shock+okadaic acid for 2 h) induced proteins (migrating at approx. 51 and 57 kDa) that cross-reacted strongly with KM-1 antibodies in both the nucleus and the cytosol. These may represent forms of c-Jun that had undergone further modification. These studies show that stresses induce phosphorylation of transcription factors in ventricular myocytes and we suggest that this response may be pathologically relevant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac myocyte apoptosis is potentially important in many cardiac disorders. In other cells, Bcl-2 family proteins and mitochondrial dysfunction are probably key regulators of the apoptotic response. In the present study, we characterized the regulation of antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bad, Bax) Bcl-2 family proteins in the rat heart during development and in oxidative stress-induced apoptosis. Bcl-2 and Bcl-xL were expressed at high levels in the neonate, and their expression was sustained during development. In contrast, although Bad and Bax were present at high levels in neonatal hearts, they were barely detectable in adult hearts. We confirmed that H(2)O(2) induced cardiac myocyte cell death, stimulating poly(ADP-ribose) polymerase proteolysis (from 2 hours), caspase-3 proteolysis (from 2 hours), and DNA fragmentation (from 8 hours). In unstimulated neonatal cardiac myocytes, Bcl-2 and Bcl-xL were associated with the mitochondria, but Bad and Bax were predominantly present in a crude cytosolic fraction. Exposure of myocytes to H(2)O(2) stimulated rapid translocation of Bad (<5 minutes) to the mitochondria. This was followed by the subsequent degradation of Bad and Bcl-2 (from approximately 30 minutes). The levels of the mitochondrial membrane marker cytochrome oxidase remained unchanged. H(2)O(2) also induced translocation of cytochrome c from the mitochondria to the cytosol within 15 to 30 minutes, which was indicative of mitochondrial dysfunction. Myocytes exposed to H(2)O(2) showed an early loss of mitochondrial membrane potential (assessed by fluorescence-activated cell sorter analysis) from 15 to 30 minutes, which was partially restored by approximately 1 hour. However, a subsequent irreversible loss of mitochondrial membrane potential occurred that correlated with cell death. These data suggest that the regulation of Bcl-2 and mitochondrial function are important factors in oxidative stress-induced cardiac myocyte apoptosis.