93 resultados para Wilde
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new edition of Wilde's poem, with notes and afterword.
Resumo:
In looking at Wilde and the prison, scholarship has understandably focussed on the lengthy and complex De Profundis, and how the prison experience confirmed or re-shaped Wilde as a writer and thinker. Wilde himself claimed to have been saved by the ‘others’ that he encountered in prison, and these ‘others’ have received scant attention. Who were they? How does a greater knowledge of them supplement our sense of the nineteenth-century prison and of Wilde? This essay looks closely at the Reading Gaol archive, tracing out the lives of some of those with whom Wilde was incarcerated and providing analyses of the prison population in Reading while Wilde was there. Aside from yielding the only known photographs of any of the young working-class men in whom Wilde took an interest, the essay seeks to build a more nuanced reading of Wilde's experience. Above all, the aim is to open out the meanings of the Wilde myth, and, in particular, to offer a more socially inclusive version.
Resumo:
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
The purpose of this paper is to show that, for a large class of band-dominated operators on $\ell^\infty(Z,U)$, with $U$ being a complex Banach space, the injectivity of all limit operators of $A$ already implies their invertibility and the uniform boundedness of their inverses. The latter property is known to be equivalent to the invertibility at infinity of $A$, which, on the other hand, is often equivalent to the Fredholmness of $A$. As a consequence, for operators $A$ in the Wiener algebra, we can characterize the essential spectrum of $A$ on $\ell^p(Z,U)$, regardless of $p\in[1,\infty]$, as the union of point spectra of its limit operators considered as acting on $\ell^p(Z,U)$.
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources.
Resumo:
In this paper we investigate the use of the perfectly matched layer (PML) to truncate a time harmonic rough surface scattering problem in the direction away from the scatterer. We prove existence and uniqueness of the solution of the truncated problem as well as an error estimate depending on the thickness and composition of the layer. This global error estimate predicts a linear rate of convergence (under some conditions on the relative size of the real and imaginary parts of the PML function) rather than the usual exponential rate. We then consider scattering by a half-space and show that the solution of the PML truncated problem converges globally at most quadratically (up to logarithmic factors), providing support for our general theory. However we also prove exponential convergence on compact subsets. We continue by proposing an iterative correction method for the PML truncated problem and, using our estimate for the PML approximation, prove convergence of this method. Finally we provide some numerical results in 2D.(C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?
Condition number estimates for combined potential boundary integral operators in acoustic scattering
Resumo:
We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.
Resumo:
We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.