15 resultados para Transcranial magnetic stimulation

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial magnetic stimulation were delivered over the subject's primary motor cortex, eliciting motor evoked potentials (MEPs) in their responding hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the right of the midline. Strikingly, this suppression occurred very early, at 70-80ms after ball appearance, and was not modified by visual fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude. Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space in the human brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Left inferior frontal gyrus (IFG) is a critical neural substrate for the resolution of proactive interference (PI) in working memory. We hypothesized that left IFG achieves this by controlling the influence of familiarity- versus recollection-based information about memory probes. Consistent with this idea, we observed evidence for an early (200 msec)-peaking signal corresponding to memory probe familiarity and a late (500 msec)-resolving signal corresponding to full accrual of trial-related contextual ("recollection-based") information. Next, we applied brief trains of repetitive transcranial magnetic stimulation (rTMS) time locked to these mnemonic signals, to left IFG and to a control region. Only early rTMS of left IFG produced a modulation of the false alarm rate for high-PI probes. Additionally, the magnitude of this effect was predicted by individual differences in susceptibility to PI. These results suggest that left IFG-based control may bias the influence of familiarity- and recollection-based signals on recognition decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its high toll on society, there has been little recent improvement in treatment efficacy for Major Depressive Disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting state functional connectivity predicted response to treatment with rapid transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased sgACC-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Depression is a heterogeneous mental illness. Neurostimulation treatments, by targeting specific nodes within the brain’s emotion-regulation network, may be useful both as therapies and as probes for identifying clinically relevant depression subtypes. Methods Here, we applied 20 sessions of magnetic resonance imaging-guided repetitive transcranial magnetic stimulation (rTMS) to the dorsomedial prefrontal cortex in 47 unipolar or bipolar patients with a medication-resistant major depressive episode. Results Treatment response was strongly bimodal, with individual patients showing either minimal or marked improvement. Compared with responders, nonresponders showed markedly higher baseline anhedonia symptomatology (including pessimism, loss of pleasure, and loss of interest in previously enjoyed activities) on item-by-item examination of Beck Depression Inventory-II and Quick Inventory of Depressive Symptomatology ratings. Congruently, on baseline functional magnetic resonance imaging, nonresponders showed significantly lower connectivity through a classical reward pathway comprising ventral tegmental area, striatum, and a region in ventromedial prefrontal cortex. Responders and nonresponders also showed opposite patterns of hemispheric lateralization in the connectivity of dorsomedial and dorsolateral regions to this same ventromedial region. Conclusions The results suggest distinct depression subtypes, one with preserved hedonic function and responsive to dorsomedial rTMS and another with disrupted hedonic function, abnormally lateralized connectivity through ventromedial prefrontal cortex, and unresponsive to dorsomedial rTMS. Future research directly comparing the effects of rTMS at different targets, guided by neuroimaging and clinical presentation, may clarify whether hedonia/reward circuit integrity is a reliable marker for optimizing rTMS target selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging evidence suggests that items held in working memory(WM)might not all be in the same representational state. One item might be privileged over others, making it more accessible and thereby recalled with greater precision. Here, using transcranial magnetic stimulation (TMS), we provide causal evidence in human participants that items inWMare differentially susceptible to disruptive TMS, depending on their state, determined either by task relevance or serial position. Across two experiments, we applied TMS to area MT during the WM retention of two motion directions. In Experiment 1, we used an “incidental cue” to bring one of the two targets into a privileged state. In Experiment 2, we presented the targets sequentially so that the last item was in a privileged state by virtue of recency. In both experiments, recall precision of motion direction was differentially affected by TMS, depending on the state of the memory target at the time of disruption. Privileged items were recalled with less precision, whereas nonprivileged items were recalled with higher precision. Thus, only the privileged item was susceptible to disruptive TMS over MT�. By contrast, precision of the nonprivileged item improved either directly because of facilitation by TMS or indirectly through reduced interference from the privileged item. Our results provide a unique line of evidence, as revealed by TMS over a posterior sensory brain region, for at least two different states of item representation in WM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity, (2) direction, and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90 ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200 ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between working memory (WM) and attention is a highly interdependent one, with evidence that attention determines the state in which items in WM are retained. Through focusing of attention, an item might be held in a more prioritized state, commonly termed as the focus of attention (FOA). The remaining items, although still retrievable, are considered to be in a different representational state. One means to bring an item into the FOA is to use retrospective cues (‘retro-cues’) which direct attention to one of the objects retained in WM. Alternatively, an item can enter a privileged state once attention is directed towards it through bottom-up influences (e.g. recency effect) or by performing an action on one of the retained items (‘incidental’ cueing). In all these cases, the item in the FOA is recalled with better accuracy compared to the other items in WM. Far less is known about the nature of the other items in WM and whether they can be flexibly manipulated in and out of the FOA. We present data from three types of experiments as well as transcranial magnetic stimulation to early visual cortex to manipulate the item inside FOA. Taken together, our results suggest that the context in which items are retained in WM matters. When an item remains behaviourally relevant, despite not being inside the FOA, re-focusing attention upon it can increase its recall precision. This suggests that a non-FOA item can be held in a state in which it can be later retrieved. However, if an item is rendered behaviourally unimportant because it is very unlikely to be probed, it cannot be brought back into the FOA, nor recalled with high precision. Under such conditions, some information appears to be irretrievably lost from WM. These findings, obtained from several different methods, demonstrate quite considerable flexibility with which items in WM can be represented depending upon context. They have important consequences for emerging state-dependent models of WM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a person chooses between two items, preference for the chosen item will increase and preference for the unchosen item will decrease because of the choice made. In other words, we tend to justify or rationalize our past behavior by changing our attitude. This phenomenon of choice-induced preference change has been traditionally explained by cognitive dissonance theory. Choosing something that is disliked or not choosing something that is liked are both cognitively inconsistent, and in order to reduce this inconsistency, people tend to change their subsequently stated preference in accordance with their past choices. Previously, neuroimaging studies identified posterior medial frontal cortex (pMFC) as a key brain region involved in cognitive dissonance. However, it still remains unknown whether the pMFC plays a causal role in inducing preference change following cognitive dissonance. Here, we demonstrate that 25-min 1-Hz repetitive transcranial magnetic stimulation (TMS) applied over the pMFC significantly reduces choice-induced preference change compared to sham stimulation, or control stimulation over a different brain region, demonstrating a causal role for the pMFC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores a novel tactile human-machine interface based on the controlled stimulation of mechanoreceptors by a subdermal magnetic implant manipulated through an external electromagnet. The selection of a suitable implant magnet and implant site is discussed and an external interface for manipulating the implant is described. The paper also reports on the basic properties of such an interface, including magnetic field strength sensitivity and frequency sensitivity obtained through experimentation on two participants. Finally, the paper presents two practical application scenarios for the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.