77 resultados para Telepresence robots
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
In over forty years of research robots have made very little progress still largely confined to industrial manufacture and cute toys, yet in the same period computing has followed Moores Law where the capacity double roughly every two years. So why is there no Moores Law for robots? Two areas stand out as worthy of research to speedup progress. The first is to get a greater understanding of how human and animal brains control movement, the second to build a new generation of robots that have greater haptic sense, that is a better ability to adapt to the environment as it is encountered. A remarkable property of the cognitive-motor system in humans and animals is that it is slow. Recognising an object may take 250 mS, a reaction time of 150 mS is considered fast. Yet despite this slow system we are well designed to allow contact with the world in a variety of ways. We can anticipate an encounter, use the change of force as a means of communication and ignore sensory cues when they are not relevant. A better understanding of these process has allowed us to build haptic interfaces to mimic the interaction. Emerging from this understanding are new ways to control the contact between robots, the user and the environment. Rehabilitation robotics has all the elements in the subject to not only enable and change the lives of people with disabilities, but also to facilitate revolution change in classic robotics.
Resumo:
Mobile robots provide a versatile platform for research, however they can also provide an interesting educational platform for public exhibition at museums. In general museums require exhibits that are both eye catching and exciting to the public whilst requiring a minimum of maintenance time from museum technicians. In many cases it is simply not possible to continuously change batteries and some method of supplying continous power is required. A powered flooring system is described that is capable of providing power continuously to a group of robots. Three different museum exhibit applications are described. All three robot exhibits are of a similar basic design although the exhibits are very different in appearance and behaviour. The durability and versatility of the robots also makes them extremely good candidates for long duration experiments such as those required by evolutionary robotics.
Resumo:
Cybernetics is a broad subject, encompassing many aspects of electrical, electronic, and computer engineering, which suffers from a lack of understanding on the part of potential applicants and teachers when recruiting students. However, once the engineering values, fascinating science, and pathways to rewarding, diverse careers are communicated, appropriate students can be very interested in enrolling. At the University of Reading, Reading, U.K., a key route for outreach to prospective students has been achieved through the use of robots in interactive talks at schools, competitions (often funded by Public Understanding of Science projects), a collectable fortnightly magazine, exhibitions in museums, open days at the University, and appearances in the media. This paper identifies the interactive engagement, anthropomorphic acceptability, and inspirational nature of robots as being key to their successful use in outreach activities. The statistical results presented show that the continued popularity of degrees at Reading in cybernetics, electronic engineering, and robotics over the last 20 years is in part due to the outreach activities to schools and the general public.
Resumo:
In this paper a look is taken at the relatively new area of culturing neural tissue and embodying it in a mobile robot platform—essentially giving a robot a biological brain. Present technology and practice is discussed. New trends and the potential effects of and in this area are also indicated. This has a potential major impact with regard to society and ethical issues and hence some initial observations are made. Some initial issues are also considered with regard to the potential consciousness of such a brain.
Resumo:
The objective of a Visual Telepresence System is to provide the operator with a high fidelity image from a remote stereo camera pair linked to a pan/tilt device such that the operator may reorient the camera position by use of head movement. Systems such as these which utilise virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the displays is generally fixed and is most suitable only for viewing elements of a scene at a particular distance. To address such limitations, a prototype system has been developed where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator. This paper explores why it is necessary to actively adjust the display system as well as the cameras and justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms. The performance and accuracy of the system is assessed with respect to eye movement.
Resumo:
A visual telepresence system has been developed at the University of Reading which utilizes eye tracing to adjust the horizontal orientation of the cameras and display system according to the convergence state of the operator's eyes. Slaving the cameras to the operator's direction of gaze enables the object of interest to be centered on the displays. The advantage of this is that the camera field of view may be decreased to maximize the achievable depth resolution. An active camera system requires an active display system if appropriate binocular cues are to be preserved. For some applications, which critically depend upon the veridical perception of the object's location and dimensions, it is imperative that the contribution of binocular cues to these judgements be ascertained because they are directly influenced by camera and display geometry. Using the active telepresence system, we investigated the contribution of ocular convergence information to judgements of size, distance and shape. Participants performed an open- loop reach and grasp of the virtual object under reduced cue conditions where the orientation of the cameras and the displays were either matched or unmatched. Inappropriate convergence information produced weak perceptual distortions and caused problems in fusing the images.
Resumo:
This paper outlines some rehabilitation applications of manipulators and identifies that new approaches demand that the robot make an intimate contact with the user. Design of new generations of manipulators with programmable compliance along with higher level controllers that can set the compliance appropriately for the task, are both feasible propositions. We must thus gain a greater insight into the way in which a person interacts with a machine, particularly given that the interaction may be non-passive. We are primarily interested in the change in wrist and arm dynamics as the person co-contracts his/her muscles. It is observed that this leads to a change in stiffness that can push an actuated interface into a limit cycle. We use both experimental results gathered from a PHANToM haptic interface and a mathematical model to observe this effect. Results are relevant to the fields of rehabilitation and therapy robots, haptic interfaces, and telerobotics
Resumo:
As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.