19 resultados para Source relative location
em CentAUR: Central Archive University of Reading - UK
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the tarte relative to other objects was varied, the ration of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying geometric reconstruction.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
Individuals with Williams syndrome (WS) display poor visuo-spatial cognition relative to verbal abilities. Furthermore, whilst perceptual abilities are delayed, visuo-spatial construction abilities are comparatively even weaker, and are characterised by a local bias. We investigated whether his differentiation in visuo-spatial abilities can be explained by a deficit in coding spatial location in WS. This can be measured by assessing participants' understanding of the spatial relations between objects within a visual scene. Coordinate and categorical spatial relations were investigated independently in four participant groups: 21 individuals with WS; 21 typically developing (TD) children matched for non-verbal ability; 20 typically developing controls of a lower non-verbal ability; and 21 adults. A third task measured understanding of visual colour relations. Results indicated first, that the comprehension of categorical and coordinate spatial relations is equally poor in WS. Second, that the comprehension of visual relations is also at an equivalent level to spatial relational understanding in this population. These results can explain the difference in performance on visuo-spatial perception and construction tasks in WS. In addition, both the WS and control groups displayed response biases in the spatial tasks. However, the direction of bias differed across the groups. This finding is explored in relation to current theories of spatial location coding. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Individuals with Williams syndrome (WS) demonstrate impaired visuo-spatial abilities in comparison to their level of verbal ability. In particular, visuo-spatial construction is an area of relative weakness. It has been hypothesised that poor or atypical location coding abilities contribute strongly to the impaired abilities observed on construction and drawing tasks [Farran, E. K., & Jarrold, C. (2005). Evidence for unusual spatial location coding in Williams syndrome: An explanation for the local bias in visuo-spatial construction tasks? Brain and Cognition, 59, 159-172; Hoffman, J. E., Landau, B., & Pagani, B. (2003). Spatial breakdown in spatial construction: Evidence from eye fixations in children with Williams syndrome. Cognitive Psychology, 46, 260-301]. The current experiment investigated location memory in WS. Specifically, the precision of remembered locations was measured as well as the biases and strategies that were involved in remembering those locations. A developmental trajectory approach was employed; WS performance was assessed relative to the performance of typically developing (TD) children ranging from 4- to 8-year-old. Results showed differential strategy use in the WS and TD groups. WS performance was most similar to the level of a TD 4-year-old and was additionally impaired by the addition of physical category boundaries. Despite their low level of ability, the WS group produced a pattern of biases in performance which pointed towards evidence of a subdivision effect, as observed in TD older children and adults. In contrast, the TD children showed a different pattern of biases, which appears to be explained by a normalisation strategy. In summary, individuals with WS do not process locations in a typical manner. This may have a negative impact on their visuo-spatial construction and drawing abilities. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.
Resumo:
The benefits of sector and regional diversification have been well documented in the literature but have not previously been investigated in Italy. In addition, previous studies have used geographically defined regions, rather than economically functional areas, when performing the analysis even though most would argue that it is the economic structure of the area that will lead to differences in demand and hence property performance. This study therefore uses economically defined regions of Italy to test the relative benefits of regional diversification versus sector diversification within the Italian real estate portfolio. To examine this issue we use constrained cross-section regressions the on the sector and regional affiliation of 14 cities in Italy to extract the “pure” return effects of the different factors using annual data over the period 1989 to 2003. In contrast, to previous studies we find that regional factors effects in Italy have a much greater influence on property returns than sector-specific effects, which is probably a direct result of using the extremely diverse economic regions of Italy rather than arbitrary geographically locations. Be that as it may, the results strongly suggest that that diversification across the regions of Italy used here is likely to offer larger risk reduction benefits than a sector diversification strategy within a region. In other words, fund managers in Italy must monitor the regional composition of their portfolios more closely than its sector allocation. Additionally, the results supports that contemporary position that ‘regional areas’ based on economic function, provide greater diversification benefits rather than areas defined by geographical location.
Resumo:
A novel but simple time-of-flight neutron scattering geometry which allows structural anisotropy to be probed directly, simultaneously and thus unambiguously in polymeric and other materials is described. A particular advantage of the simultaneous data collection when coupled to the large area of the beam is that it enables thin films (< 10 μm < 10 mg) to be studied with relative ease. The utility of the technique is illustrated by studies on both deformed poly(styrene) glasses and on thin films of electrical conducting polymers. In the latter case, the power of isotopic substitution is illustrated to great effect. The development of these procedures for use in other areas of materials science is briefly discussed.
Resumo:
The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array
Resumo:
To fully appreciate the environmental impact of an office building, the transport-related carbon dioxide (CO2) emissions resulting from its location should be considered in addition to the emissions that result from the operation of the building itself. Travel-related CO2 emissions are a function of three criteria, two of which are influenced by physical location and one of which is a function of business practice. The two spatial criteria are, first, the location of the office relative to the location of the workforce, the market, complementary business activities (and the agglomeration benefits this offers) and, second, the availability and cost of transport modes. The business criterion is the need for, and therefore frequency of, visits and this, in turn, depends on the requirement for a physically present workforce and face-to-face contact with clients. This paper examines the commuting-related CO2 emissions that result from city centre and out-of-town office locations. Using 2001 Census Special Workplace Statistics which record people’s residence, usual workplace and mode of transport between them, distance travelled and mode of travel were calculated for a sample of city centre and out-of-town office locations. The results reveal the extent of the difference between transport-related CO2 emitted by commuters to out-of-town and city centre locations. The implications that these findings have for monitoring the environmental performance of offices are discussed.
Resumo:
Following a malicious or accidental atmospheric release in an outdoor environment it is essential for first responders to ensure safety by identifying areas where human life may be in danger. For this to happen quickly, reliable information is needed on the source strength and location, and the type of chemical agent released. We present here an inverse modelling technique that estimates the source strength and location of such a release, together with the uncertainty in those estimates, using a limited number of measurements of concentration from a network of chemical sensors considering a single, steady, ground-level source. The technique is evaluated using data from a set of dispersion experiments conducted in a meteorological wind tunnel, where simultaneous measurements of concentration time series were obtained in the plume from a ground-level point-source emission of a passive tracer. In particular, we analyze the response to the number of sensors deployed and their arrangement, and to sampling and model errors. We find that the inverse algorithm can generate acceptable estimates of the source characteristics with as few as four sensors, providing these are well-placed and that the sampling error is controlled. Configurations with at least three sensors in a profile across the plume were found to be superior to other arrangements examined. Analysis of the influence of sampling error due to the use of short averaging times showed that the uncertainty in the source estimates grew as the sampling time decreased. This demonstrated that averaging times greater than about 5min (full scale time) lead to acceptable accuracy.
Resumo:
Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.
Resumo:
We present a simple theoretical land-surface classification that can be used to determine the location and temporal behavior of preferential sources of terrestrial dust emissions. The classification also provides information about the likely nature of the sediments, their erodibility and the likelihood that they will generate emissions under given conditions. The scheme is based on the dual notions of geomorphic type and connectivity between geomorphic units. We demonstrate that the scheme can be used to map potential modern-day dust sources in the Chihuahuan Desert, the Lake Eyre Basin and the Taklamakan. Through comparison with observed dust emissions, we show that the scheme provides a reasonable prediction of areas of emission in the Chihuahuan Desert and in the Lake Eyre Basin. The classification is also applied to point source data from the Western Sahara to enable comparison of the relative importance of different land surfaces for dust emissions. We indicate how the scheme could be used to provide an improved characterization of preferential dust sources in global dust-cycle models.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.