21 resultados para Seismic interferometry
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cross-hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional-wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale-rich rocks have fabric-related average velocity anisotropy of between 10% and 30%. The cross-hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross-hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid-filled fractures, when using geophysical techniques for hydrological investigations.
Resumo:
We examine the motion of the ground surface on the Soufriere Hills Volcano, Montserrat between 1998 and 2000 using radar interferometry (InSAR). To minimise the effects of variable atmospheric water vapour on the InSAR measurements we use independently-derived measurements of the radar path delay from six continuous GPS receivers. The surfaces providing a measurable inter-ferometric signal are those on pyroclastic flow deposits, mainly emplaced in 1997. Three types of surface motion can be discriminated. Firstly, the surfaces of thick, valley-filling deposits subsided at rates of 150-120 mm/year in the year after emplacement to 50-30 mm/year two years later. This must be due to contraction and settling effects during cooling. The second type is the near-field motion localised within about one kilometre of the dome. Both subsidence and uplift events are seen and though the former could be due to surface gravitational effects, the latter may reflect shallow (< 1 km) pressurisation effects within the conduit/dome. Far-field motions of the surface away from the deeply buried valleys are interpreted as crustal strains. Because the flux of magma to the surface stopped from March 1998 to November 1999 and then resumed from November 1999 through 2000, we use InSAR data from these two periods to test the crustal strain behaviour of three models of magma supply: open, depleting and unbalanced. The InSAR observations of strain gradients of 75-80 mm/year/krn uplift during the period of quiescence on the western side of the volcano are consistent with an unbalanced model in which magma supply into a crustal magma chamber continues during quiescence, raising chamber pressure that is then released upon resumption of effusion. GPS motion vectors agree qualitatively with the InSAR displacements but are of smaller magnitude. The discrepancy may be due to inaccurate compensation for atmospheric delays in the InSAR data. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Modal filtering is based on the capability of single-mode waveguides to transmit only one complex amplitude function to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible in a nulling interferometer. In the present paper we focus on the progress of Integrated Optics in the thermal infrared [6-20 mu m] range, one of the two candidate technologies for the fabrication of Modal Filters, together with fiber optics. In conclusion of the European Space Agency's (ESA) "Integrated Optics for Darwin" activity, etched layers of clialcogenide material deposited on chalcogenide glass substrates was selected among four candidates as the technology with the best potential to simultaneously meet the filtering efficiency, absolute and spectral transmission, and beam coupling requirements. ESA's new "Integrated Optics" activity started at mid-2007 with the purpose of improving the technology until compliant prototypes can be manufactured and validated, expectedly by the end of 2009. The present paper aims at introducing the project and the components requirements and functions. The selected materials and preliminary designs, as well as the experimental validation logic and test benches are presented. More details are provided on the progress of the main technology: vacuum deposition in the co-evaporation mode and subsequent etching of chalcogenide layers. In addition., preliminary investigations of an alternative technology based on burying a chalcogenide optical fiber core into a chalcogenide substrate are presented. Specific developments of anti-reflective solutions designed for the mitigation of Fresnel losses at the input and output surface of the components are also introduced.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Resumo:
The temporal variability of the atmosphere through which radio waves pass in the technique of differential radar interferometry can seriously limit the accuracy with which the method can measure surface motion. A forward, nested mesoscale model of the atmosphere can be used to simulate the variable water content along the radar path and the resultant phase delays. Using this approach we demonstrate how to correct an interferogram of Mount Etna in Sicily associated with an eruption in 2004-5. The regional mesoscale model (Unified Model) used to simulate the atmosphere at higher resolutions consists of four nested domains increasing in resolution (12, 4, 1, 0.3 km), sitting within the analysis version of a global numerical model that is used to initiate the simulation. Using the high resolution 3D model output we compute the surface pressure, temperature and the water vapour, liquid and solid water contents, enabling the dominant hydrostatic and wet delays to be calculated at specific times corresponding to the acquisition of the radar data. We can also simulate the second-order delay effects due to liquid water and ice.
Resumo:
We discuss some novel technologies that enable the implementation of shearing interferometry at the terahertz part of the spectrum. Possible applications include the direct measurement of lens parameters, the measurement of refractive index of materials that are transparent to terahertz frequencies, determination of homogeneity of samples, measurement of optical distortions and the non-contact evaluation of thermal expansion coefficient of materials buried inside media that are opaque to optical or infrared frequencies but transparent to THz frequencies. The introduction of a shear to a Gaussian free-space propagating terahertz beam in a controlled manner also makes possible a range of new encoding and optical signal processing modalities.
Resumo:
Interferometric Synthetic Aperture Radar (InSAR) measurements of surface deformation at Nyamuragira Volcano between 1996 and 2010 reveal a variety of co-eruptive and inter-eruptive signals. During 7 of the 8 eruptions in this period deformation was measured that is consistent with the emplacement of shallow near-vertical dykes feeding the eruptive fissures and associated with a NNW-trending fissure zone that traverses the summit caldera. Between eruptions the caldera and the summit part of this fissure zone subsided gradually (b3–5 cm/year). We also find evidence of post-eruption subsidence around the sites of the main vents of some flank eruptions (2002, 2004, 2006, and 2010). In the 6 months prior to the 2010 eruption a10-km wide zone centred on the caldera inflated by 1–2 cm. The low magnitude of this signal suggests that the presumed magma reservoir at 3–8 km depth contains highly compressible magma with little stored elastic strain energy. To the north of the caldera the fissure zone splits into WNW and NE branches around a zone that has a distinct InSAR signal. We interpret this zone to represent an elevated, 'stable' block of basement rocks buried by lavas within the Rift Zone.
Resumo:
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.
Resumo:
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low-shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional-wave velocity is strongly correlated with the shear-wave velocity in this suite of rocks. The ratio V-P/V-S varies significantly with change of both pore-fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot-flow and squirt-flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt-flow of fluid between the pores of various geometries. The contribution of the Biot-flow loss mechanism to the total loss is negligible. The compressional-wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low-shale, high-porosity sandstone reservoirs.
Resumo:
Laboratory measurements of the attenuation and velocity dispersion of compressional and shear waves at appropriate frequencies, pressures, and temperatures can aid interpretation of seismic and well-log surveys as well as indicate absorption mechanisms in rocks. Construction and calibration of resonant-bar equipment was used to measure velocities and attenuations of standing shear and extensional waves in copper-jacketed right cylinders of rocks (30 cm in length, 2.54 cm in diameter) in the sonic frequency range and at differential pressures up to 65 MPa. We also measured ultrasonic velocities and attenuations of compressional and shear waves in 50-mm-diameter samples of the rocks at identical pressures. Extensional-mode velocities determined from the resonant bar are systematically too low, yielding unreliable Poisson's ratios. Poisson's ratios determined from the ultrasonic data are frequency corrected and used to calculate the sonic-frequency compressional-wave velocities and attenuations from the shear- and extensional-mode data. We calculate the bulk-modulus loss. The accuracies of attenuation data (expressed as 1000/Q, where Q is the quality factor) are +/- 1 for compressional and shear waves at ultrasonic frequency, +/- 1 for shear waves, and +/- 3 for compressional waves at sonic frequency. Example sonic-frequency data show that the energy absorption in a limestone is small (Q(P) greater than 200 and stress independent) and is primarily due to poroelasticity, whereas that in the two sandstones is variable in magnitude (Q(P) ranges from less than 50 to greater than 300, at reservoir pressures) and arises from a combination of poroelasticity and viscoelasticity. A graph of compressional-wave attenuation versus compressional-wave velocity at reservoir pressures differentiates high-permeability (> 100 mD, 9.87 X 10(-14) m(2)) brine-saturated sandstones from low-permeability (< 100 mD, 9.87 X 10 (14) m(2)) sandstones and shales.
Resumo:
Using topographic data collected by radar interferometry, stereo-photogrammetry, and field survey we have measured the changing surface of Volcan Arenal in Costa Rica over the period from 1980 to 2004. During this time this young volcano has mainly effused basaltic andesite lava, continuing the activity that began in 1968. Explosive products form only a few percent of the volumetric output. We have calculated digital elevation models for the years 1961, 1988 and 1997 and modified existing models for 2000 and 2004. From these we have estimated the volume of lava effused and coupled this with the data presented by an earlier study for 1968-1980. We find that a dense rock equivalent volume of 551 M m(3) was effused from 1968 to 2004. The dense rock equivalent effusion rate fell from about 2 m(3) s(-1) to about 0.1-0.2 m(3) s(-1) over the same period, with an average rate of about 0.5 m(3) s(-1). Between 1980 and 2004, the average effusion rate was 0.36 m(3) s(-1), a similar rate to that measured between 1974 and 1980. There have been two significant deviations from this long-term rate. The effusion rate increased from 1984 to 1991, at the same time as explosivity increased. After a period of moderate effusion rates in the 1990s, the rate fell to lower levels around 1999. (c) 2006 Elsevier B.V. All rights reserved.