15 resultados para Regular orthography
em CentAUR: Central Archive University of Reading - UK
Resumo:
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.
Resumo:
The design space of emerging heterogenous multi-core architectures with re-configurability element makes it feasible to design mixed fine-grained and coarse-grained parallel architectures. This paper presents a hierarchical composite array design which extends the curret design space of regular array design by combining a sequence of transformations. This technique is applied to derive a new design of a pipelined parallel regular array with different dataflow between phases of computation.
Resumo:
An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.
Resumo:
We describe a high-level design method to synthesize multi-phase regular arrays. The method is based on deriving component designs using classical regular (or systolic) array synthesis techniques and composing these separately evolved component design into a unified global design. Similarity transformations ar e applied to component designs in the composition stage in order to align data ow between the phases of the computations. Three transformations are considered: rotation, re ection and translation. The technique is aimed at the design of hardware components for high-throughput embedded systems applications and we demonstrate this by deriving a multi-phase regular array for the 2-D DCT algorithm which is widely used in many vide ocommunications applications.
Resumo:
A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.
Resumo:
Dual-system models suggest that English past tense morphology involves two processing routes: rule application for regular verbs and memory retrieval for irregular verbs (Pinker, 1999). In second language (L2) processing research, Ullman (2001a) suggested that both verb types are retrieved from memory, but more recently Clahsen and Felser (2006) and Ullman (2004) argued that past tense rule application can be automatised with experience by L2 learners. To address this controversy, we tested highly proficient Greek-English learners with naturalistic or classroom L2 exposure compared to native English speakers in a self-paced reading task involving past tense forms embedded in plausible sentences. Our results suggest that, irrespective to the type of exposure, proficient L2 learners of extended L2 exposure apply rule-based processing.
Resumo:
In our seminal work, we reported how the biomaterial Parylene-C has the unique ability to coerce neurons and glial cells to migrate to and then grow in straight lines along serum coated rectangular parylene-C structures mounted on an oxidised silicon substrate. In this brief communication, we report how astrocyte cell bodies, from the dissociated postnatal rat hippocampus, can now to be successfully localised on an ultra-thin 13nm layer of parylene-C mounted on oxidised silicon (Figure 1). What is extremely interesting about this finding is that the astrocyte processes extended mainly in horizontal and vertical directions from the cell body thus creating a regular lattice network of individual cells. In addition, they comfortably extended a 50μm gap (equivalent to ~ 10 cell body diameters) to connect to adjacent astrocytes on neighbouring Parylene-C structures. This was found to occur repeatedly on circular geometries of 20μm diameter. In comparison to our previous work [1], we have decreased the thickness of the parylene-C structures by a factor of 10, to allow such technology to be able to be utilised for passive electrode design that requires extremely thin structures such as these. Thus, being able to culture astrocytes in regular lattice networks will pave the way for precise monitoring and stimulation of such ensembles via multi-electrode arrays, allowing a closer insight into their dynamic behaviour and their network properties.
Resumo:
The electronic structure and oxidation state of atomic Au adsorbed on a perfect CeO2(111) surface have been investigated in detail by means of periodic density functional theory-based calculations, using the LDA+U and GGA+U potentials for a broad range of U values, complemented with calculations employing the HSE06 hybrid functional. In addition, the effects of the lattice parameter a0 and of the starting point for the geometry optimization have also been analyzed. From the present results we suggest that the oxidation state of single Au atoms on CeO2(111) predicted by LDA+U, GGA+U, and HSE06 density functional calculations is not conclusive and that the final picture strongly depends on the method chosen and on the construction of the surface model. In some cases we have been able to locate two well-defined states which are close in energy but with very different electronic structure and local geometries, one with Au fully oxidized and one with neutral Au. The energy difference between the two states is typically within the limits of the accuracy of the present exchange-correlation potentials, and therefore, a clear lowest-energy state cannot be identified. These results suggest the possibility of a dynamic distribution of Au0 and Au+ atomic species at the regular sites of the CeO2(111) surface.
Resumo:
We investigated selective impairments in the production of regular and irregular past tense by examining language performance and lesion sites in a sample of twelve stroke patients. A disadvantage in regular past tense production was observed in six patients when phonological complexity was greater for regular than irregular verbs, and in three patients when phonological complexity was closely matched across regularity. These deficits were not consistently related to grammatical difficulties or phonological errors but were consistently related to lesion site. All six patients with a regular past tense disadvantage had damage to the left ventral pars opercularis (in the inferior frontal cortex), an area associated with articulatory sequencing in prior functional imaging studies. In addition, those that maintained a disadvantage for regular verbs when phonological complexity was controlled had damage to the left ventral supramarginal gyrus (in the inferior parietal lobe), an area associated with phonological short-term memory. When these frontal and parietal regions were spared in patients who had damage to subcortical (n = 2) or posterior temporo-parietal regions (n = 3), past tense production was relatively unimpaired for both regular and irregular forms. The remaining (12th) patient was impaired in producing regular past tense but was significantly less accurate when producing irregular past tense. This patient had frontal, parietal, subcortical and posterior temporo-parietal damage, but was distinguished from the other patients by damage to the left anterior temporal cortex, an area associated with semantic processing. We consider how our lesion site and behavioral observations have implications for theoretical accounts of past tense production.
Resumo:
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.
Resumo:
Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.