23 resultados para Power method
em CentAUR: Central Archive University of Reading - UK
Resumo:
Finding the smallest eigenvalue of a given square matrix A of order n is computationally very intensive problem. The most popular method for this problem is the Inverse Power Method which uses LU-decomposition and forward and backward solving of the factored system at every iteration step. An alternative to this method is the Resolvent Monte Carlo method which uses representation of the resolvent matrix [I -qA](-m) as a series and then performs Monte Carlo iterations (random walks) on the elements of the matrix. This leads to great savings in computations, but the method has many restrictions and a very slow convergence. In this paper we propose a method that includes fast Monte Carlo procedure for finding the inverse matrix, refinement procedure to improve approximation of the inverse if necessary, and Monte Carlo power iterations to compute the smallest eigenvalue. We provide not only theoretical estimations about accuracy and convergence but also results from numerical tests performed on a number of test matrices.
Resumo:
This work proposes a method to objectively determine the most suitable analogue redesign method for forward type converters under digital voltage mode control. Particular emphasis is placed on determining the method which allows the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration have the largest phase margins. An accurate model of the power stage is used for simulation, and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent correlation between the simulation and experimental results is presented. This work will allow designers to confidently choose the analogue redesign method which yields the greater phase margin for their application.
Resumo:
This article proposes a systematic approach to determine the most suitable analogue redesign method to be used for forward-type converters under digital voltage mode control. The focus of the method is to achieve the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration with pre-warping have the largest phase margins. An algorithm has been developed to determine the frequency of the crossing point where the recommended discretisation method changes. An accurate model of the power stage is used for simulation and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent closeness between the simulation and experimental results is presented. This work provides a concrete example to allow academics and engineers to systematically choose a discretisation method.
Resumo:
This paper describes the design, implementation and characterisation of a contactless power transfer system for rotating applications. The power transfer system is based upon a zero-voltage-switched, full-bridge, DC-DC converter, but utilises a non-standard transformer. This transformer allows power transfer between its primary and secondary windings while also allowing free rotation between these windings. The aim of this research is to develop a solution that could replace mechanical slip-rings in certain applications where a non-contacting system would be advantageous. Based upon the design method presented in this paper, a 2 kW prototype system is constructed. Results obtained from testing the 2 kW prototype are presented and discussed. This discussion considers how the performance of the transformer varies with rotation and also the overall efficiency of the system
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
A Neural Mass model is coupled with a novel method to generate realistic Phase reset ERPs. The power spectra of these synthetic ERPs are compared with the spectra of real ERPs and synthetic ERPs generated via the Additive model. Real ERP spectra show similarities with synthetic Phase reset ERPs and synthetic Additive ERPs.
Resumo:
Many well-established statistical methods in genetics were developed in a climate of severe constraints on computational power. Recent advances in simulation methodology now bring modern, flexible statistical methods within the reach of scientists having access to a desktop workstation. We illustrate the potential advantages now available by considering the problem of assessing departures from Hardy-Weinberg (HW) equilibrium. Several hypothesis tests of HW have been established, as well as a variety of point estimation methods for the parameter which measures departures from HW under the inbreeding model. We propose a computational, Bayesian method for assessing departures from HW, which has a number of important advantages over existing approaches. The method incorporates the effects-of uncertainty about the nuisance parameters--the allele frequencies--as well as the boundary constraints on f (which are functions of the nuisance parameters). Results are naturally presented visually, exploiting the graphics capabilities of modern computer environments to allow straightforward interpretation. Perhaps most importantly, the method is founded on a flexible, likelihood-based modelling framework, which can incorporate the inbreeding model if appropriate, but also allows the assumptions of the model to he investigated and, if necessary, relaxed. Under appropriate conditions, information can be shared across loci and, possibly, across populations, leading to more precise estimation. The advantages of the method are illustrated by application both to simulated data and to data analysed by alternative methods in the recent literature.
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
This paper explores a new technique to calculate and plot the distribution of instantaneous transmit envelope power of OFDMA and SC-FDMA signals from the equation of Probability Density Function (PDF) solved numerically. The Complementary Cumulative Distribution Function (CCDF) of Instantaneous Power to Average Power Ratio (IPAPR) is computed from the structure of the transmit system matrix. This helps intuitively understand the distribution of output signal power if the structure of the transmit system matrix and the constellation used are known. The distribution obtained for OFDMA signal matches complex normal distribution. The results indicate why the CCDF of IPAPR in case of SC-FDMA is better than OFDMA for a given constellation. Finally, with this method it is shown again that cyclic prefixed DS-CDMA system is one case with optimum IPAPR. The insight that this technique provides may be useful in designing area optimised digital and power efficient analogue modules.
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Resumo:
Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis
Resumo:
We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e. raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail, and then demonstrate how it could be used in an idealised magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ~15 degrees magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves, and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.
Resumo:
The nonlinearity of high-power amplifiers (HPAs) has a crucial effect on the performance of multiple-input-multiple-output (MIMO) systems. In this paper, we investigate the performance of MIMO orthogonal space-time block coding (OSTBC) systems in the presence of nonlinear HPAs. Specifically, we propose a constellation-based compensation method for HPA nonlinearity in the case with knowledge of the HPA parameters at the transmitter and receiver, where the constellation and decision regions of the distorted transmitted signal are derived in advance. Furthermore, in the scenario without knowledge of the HPA parameters, a sequential Monte Carlo (SMC)-based compensation method for the HPA nonlinearity is proposed, which first estimates the channel-gain matrix by means of the SMC method and then uses the SMC-based algorithm to detect the desired signal. The performance of the MIMO-OSTBC system under study is evaluated in terms of average symbol error probability (SEP), total degradation (TD) and system capacity, in uncorrelated Nakagami-m fading channels. Numerical and simulation results are provided and show the effects on performance of several system parameters, such as the parameters of the HPA model, output back-off (OBO) of nonlinear HPA, numbers of transmit and receive antennas, modulation order of quadrature amplitude modulation (QAM), and number of SMC samples. In particular, it is shown that the constellation-based compensation method can efficiently mitigate the effect of HPA nonlinearity with low complexity and that the SMC-based detection scheme is efficient to compensate for HPA nonlinearity in the case without knowledge of the HPA parameters.
Resumo:
The use of pulse compression techniques to improve the sensitivity of meteorological radars has become increasingly common in recent years. An unavoidable side-effect of such techniques is the formation of ‘range sidelobes’ which lead to spreading of information across several range gates. These artefacts are particularly troublesome in regions where there is a sharp gradient in the power backscattered to the antenna as a function of range. In this article we present a simple method for identifying and correcting range sidelobe artefacts. We make use of the fact that meteorological targets produce an echo which fluctuates at random, and that this echo, like a fingerprint, is unique to each range gate. By cross-correlating the echo time series from pairs of gates therefore we can identify whether information from one gate has spread into another, and hence flag regions of contamination. In addition we show that the correlation coefficients contain quantitative information about the fraction of power leaked from one range gate to another, and we propose a simple algorithm to correct the corrupted reflectivity profile.