13 resultados para POLYIMIDE NANOCOMPOSITES

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific monomer sequences in aromatic copolyimides are recognized through their -stacking and hydrogen-bonding interactions with a sterically and electronically complementary molecular tweezer. These interactions enable the tweezer molecule to read monomer sequences comprising up to 27 aromatic rings by multiple adjacent binding to neighboring sites on the polymer chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supramolecular polymer based upon two complementary polymer components is formed by sequential deposition from solution in THF, using a piezoelectric drop-on-demand inkjet printer. Highly efficient cycloaddition or ‘click’ chemistry afforded a well-defined poly(ethylene glycol) featuring chain-folding diimide end groups, which possesses greatly enhanced solubility in THF relative to earlier materials featuring random diimide sequences. Blending the new polyimide with a complementary poly(ethylene glycol) system bearing pyrene end groups (which bind to the chain-folding diimide units) overcomes the limited solubility encountered previously with chain-folding polyimides in inkjet printing applications. The solution state properties of the resulting polymer blend were assessed via viscometry to confirm the presence of a supramolecular polymer before depositing the two electronically complementary polymers by inkjet printing techniques. The novel materials so produced offer an insight into ways of controlling the properties of printed materials through tuning the structure of the polymer at the (supra)molecular level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel supramolecular polymer system, in which the terminal pyrenyl groups of a polyamide intercalate into the chain-folds of a polyimide via electronically-complementary pi-pi stacking, shows both enhanced mechanical properties relative to those of its individual components and facile healing characteristics as a result of the thermoreversibility of non-covalent interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence-specific binding is demonstrated between pyrene-based tweezer molecules and soluble, high molar mass copolyimides. The binding involves complementary pi - pi stacking interactions, polymer chain-folding, and hydrogen bonding and is extremely sensitive to the steric environment around the pyromellitimide binding-site. A detailed picture of the intermolecular interactions involved has been obtained through single-crystal X-ray studies of tweezer complexes with model diimides. Ring-current magnetic shielding of polyimide protons by the pyrene '' arms '' of the tweezer molecule induces large complexation shifts of the corresponding H-1 NMR resonances, enabling specific triplet sequences to be identified by their complexation shifts. Extended comonomer sequences (triplets of triplets in which the monomer residues differ only by the presence or absence of a methyl group) can be '' read '' by a mechanism which involves multiple binding of tweezer molecules to adjacent diimide residues within the copolymer chain. The adjacent-binding model for sequence recognition has been validated by two conceptually different sets of tweezer binding experiments. One approach compares sequence-recognition events for copolyimides having either restricted or unrestricted triple-triplet sequences, and the other makes use of copolymers containing both strongly binding and completely nonbinding diimide residues. In all cases the nature and relative proportions of triple-triplet sequences predicted by the adjacent-binding model are fully consistent with the observed H-1 NMR data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.