16 resultados para Nonhuman Primate
em CentAUR: Central Archive University of Reading - UK
Resumo:
The primary endosymbiotic bacteria from three species of parasitic primate lice were characterized molecularly. We have confirmed the characterization of the primary endosymbiont (P-endosymbiont) of the human head/body louse Pediculus humanus and provide new characterizations of the P-endosymbionts from Pediculus schaeffi from chimpanzees and Pthirus pubis, the pubic louse of humans. The endosymbionts show an average percent sequence divergence of 11 to 15% from the most closely related known bacterium "Candidatus Arsenophonus insecticola." We propose that two additional species be added to the genus "Candidatus Riesia." The new species proposed within "Candidatus Riesia" have sequence divergences of 3.4% and 10 to 12% based on uncorrected pairwise differences. Our Bayesian analysis shows that the branching pattern for the primary endosymbionts was the same as that for their louse hosts, suggesting a long coevolutionary history between primate lice and their primary endosymbionts. We used a calibration of 5.6 million years to date the divergence between endosymbionts from human and chimpanzee lice and estimated an evolutionary rate of nucleotide substitution of 0.67% per million years, which is 15 to 30 times faster than previous estimates calculated for Buchnera, the primary endosymbiont in aphids. Given the evidence for cospeciation with primate lice and the evidence for fast evolutionary rates, this lineage of endosymbiotic bacteria can be evaluated as a fast-evolving marker of both louse and primate evolutionary histories.
Resumo:
A cellular receptor for the haemagglutinating enteroviruses (HEV), and the protein that mediates haemagglutination, is the membrane complement regulatory protein decay accelerating factor (DAF; CD55). Although primate DAF is highly conserved, significant differences exist to enable cell lines derived from primates to be utilized for the characterization of the DAF binding phenotype of human enteroviruses. Thus, several distinct DAF-binding phenotypes of a selection of HEVs (viz. coxsackievirus A21 and echoviruses 6, 7, 11-13, 29) were identified from binding and infection assays using a panel of primate cells derived from human, orang-utan, African Green monkey and baboon tissues. These studies complement our recent determination of the crystal structure of SCR(34) of human DAF [Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J. & Lea, S. (2003). J Biol Chem 278, 10691-10696] and have enabled us to better map the regions of DAF with which enteroviruses interact and, in certain cases, predict specific virus-receptor contacts.
Resumo:
The themed section “Nonhuman Empires” contributes to a critique of anthropocentrism in the field of imperial history. It reveals the variety of ways in which the historical trajectories of nonhuman animals and empires both intersected and informed one another. Beyond merely rehabilitating nonhuman themes in conversations about imperial history, it provides a platform for rethinking both nonhumans and empires as they are envisioned conventionally in the historiography. This introductory article begins by situating this special section as a conversation between science studies and animal studies, on the one hand, and the historiography of empires, on the other. It then suggests ways to reconceptualize agency, subjects, nonhumans, and empire by combining certain shared concerns of subaltern studies and actor-network theory. Finally, it emphasizes the need to integrate postcolonial critiques with emerging scholarship about the posthuman.
Resumo:
Post-phenomenological geographies are an emergent (and as yet relatively fragmentary) body of work. This work does not reflect a turn away from phenomenological theories; rather it reflects a critical engagement which rereads them through the post-structuralist theories of such authors as Deleuze, Derrida, and Levinas. This rereading, combined with a disciplinary context of a turn to practice and the ‘more than human’, has resulted in post-phenomenological geographies which extend the boundaries of the phenomenological focus upon the experiencing subject (in place). Thus, the interest is in the ways in which inhuman, nonhuman, and more-than-human forces contribute to processes of subject formation, place making, and inhabiting the world. These geographies have thus far been played out through critical explorations of the realms of the experiencing subject and landscape. This more-than-human focus has tested conventional human geographical methods, requiring innovative use of technologies such as video to document research, the use of experiential research methods, and also experimentation with the form of narrating these experiential methods.
Resumo:
Amman the primate capital city of the Hashemite Kingdom of Jordan currently has a population in excess of 2 million, but in 1924 it consisted of little more than a collection of dwellings and some 2000-3000 inhabitants. The present paper sets out to document and explain the phenomenal expansion of "ever-growing Amman". The physical geography of the urban region and the early growth of the city are considered at the outset and this leads directly to consideration of the highly polarised social structuring that characterises contemporary Amman. In doing this, original data derived from the recent Greater Amman Municipality's Geographical Information System are presented. In this respect, the essential modernity of the city is exemplified. The employment and industrial bases of the city and a range of pressing contemporary issues are then considered, including transport and congestion, the provision of urban water under conditions of water stress and privatisation, and urban and regional development planning for the city. The paper concludes by emphasizing the growing regional and international geopolitical salience of the city of Amman at the start of the 21st century. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The amygdala is consistently implicated in biologically relevant learning tasks such as Pavlovian conditioning. In humans, the ability to identify individual faces based on the social outcomes they have predicted in the past constitutes a critical form of associative learning that can be likened to “social conditioning.” To capture such learning in a laboratory setting, participants learned about faces that predicted negative, positive, or neutral social outcomes. Participants reported liking or disliking the faces in accordance with their learned social value. During acquisition, we observed differential functional magnetic resonance imaging activation across the human amygdaloid complex consistent with previous lesion, electrophysiological, and functional neuroimaging data. A region of the medial ventral amygdala and a region of the dorsal amygdala/substantia innominata showed signal increases to both Negative and Positive faces, whereas a lateral ventral region displayed a linear representation of the valence of faces such that Negative > Positive > Neutral. This lateral ventral locus also differed from the dorsal and medial loci in that the magnitude of these responses was more resistant to habituation. These findings document a role for the human amygdala in social learning and reveal coarse regional dissociations in amygdala activity that are consistent with previous human and nonhuman animal data.
Resumo:
Saccadic eye movements and fixations are the behavioral means by which we visually sample text during reading. Human oculomotor control is governed by a complex neurophysiological system involving the brain stem, superior colliculus, and several cortical areas [1, 2]. A very widely held belief among researchers investigating primate vision is that the oculomotor system serves to orient the visual axes of both eyes to fixate the same target point in space. It is argued that such precise positioning of the eyes is necessary to place images on corresponding retinal locations, such that on each fixation a single, nondiplopic, visual representation is perceived [3]. Vision works actively through a continual sampling process involving saccades and fixations [4]. Here we report that during normal reading, the eyes do not always fixate the same letter within a word. We also demonstrate that saccadic targeting is yoked and based on a unified cyclopean percept of a whole word since it is unaffected if different word parts are delivered exclusively to each eye via a dichoptic presentation technique. These two findings together suggest that the visual signal from each eye is fused at a very early stage in the visual pathway, even when the fixation disparity is greater than one character (0.29 deg), and that saccade metrics for each eye are computed on the basis of that fused signal.
Resumo:
Increasing rates of obesity have stimulated research into possible contributing factors, including specific dietary components such as trans fatty acids (TFAs). This review considers the evidence for an association between TFA intake and weight gain. It concludes that there is limited but consistent evidence from epidemiological studies, and from a primate model, that increased TFA consumption may result in a small additional weight gain. Data from a long-term study in a primate model suggest that TFA may have a greater adipogenic effect than cis monounsaturated fatty acids; however, there are currently inadequate mechanistic data to provide a comprehensive and plausible explanation for any such metabolic differences between the types of fatty acids.
Resumo:
Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.
Resumo:
In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
Resumo:
An Escherichia coli oligonucleotide microarray based on three sequenced genomes was validated for comparative genomic microarray hybridization and used to study the diversity of E. coli O157 isolates from human infections and food and animal sources. Among 26 test strains, 24 (including both Shiga toxin [Stx]-positive and -negative strains) were found to be related to the two sequenced E. coli O157:117 strains, EDL933 and Sakai. However, these strains showed much greater genetic diversity than those reported previously, and most of them could not be categorized as either lineage I or H. Some genes were found more often in isolates from human than from nonhuman sources; e.g., ECs1202 and ECs2976, associated with stx2AB and stx1AB, were in all isolates from human sources but in only 40% of those from nonhuman sources. Some (but not all) lineage I-specific or -dominant genes were also more frequently associated with isolates from human. The results suggested that it might be more effective to concentrate our efforts on finding markers that are directly related to infection rather than those specific to certain lineages. In addition, two Stx-negative O157 cattle isolates (one confirmed to be 117) were significantly different from other Stx-positive and -negative E. coli O157:117 strains and were more similar to MG1655 in their gene content. This work demonstrates that not all E. coli O157:117 strains belong to the same clonal group, and those that were similar to E. coli K-12 might be less virulent.
Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates
Resumo:
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cisregulatory regions play a dominant role in phenotypic evolution. Key words: ASPM, MCPH1, CDK5RAP2, CENPJ, brain, neurogenesis, primates.
Resumo:
This is the first full-length study to apply current debates about animality to the work of one of the twentieth century's most influential writers. Animals are to be found throughout Samuel Beckett's prose, drama, and poetry. SAMUEL BECKETT AND ANIMALS brings together an international array of Beckett specialists to explore the significance of the animals that populate Beckett's work. In doing so, they also draw attention to the ethical continuum that binds human and nonhuman animality, thus providing new ways of thinking the animal within contemporary culture.
Resumo:
Position in the social hierarchy can influence brain dopamine function and cocaine reinforcement in nonhuman primates during early cocaine exposure. With prolonged exposure, however, initial differences in rates of cocaine self-administration between dominant and subordinate monkeys dissipate. The present studies used a choice procedure to assess the relative reinforcing strength of cocaine in group-housed male cynomolgus monkeys with extensive cocaine self-administration histories. Responding was maintained under a concurrent fixed-ratio 50 schedule of food and cocaine (0.003-0.1 mg/kg per injection) presentation. Responding on the cocaine-associated lever increased as a function of cocaine dose in all monkeys. Although response distribution was similar across social rank when saline or relatively low or high cocaine doses were the alternative to food, planned t tests indicated that cocaine choice was significantly greater in subordinate monkeys when choice was between an intermediate dose (0.01 mg/kg) and food. When a between-session progressive-ratio procedure was used to increase response requirements for the preferred reinforcer (either cocaine or food), choice of that reinforcer decreased in all monkeys. The average response requirement that produced a shift in response allocation from the cocaine-associated lever to the food-associated lever was higher in subordinates across cocaine doses, an effect that trended toward significance (p = 0.053). These data indicate that despite an extensive history of cocaine self-administration, most subordinate monkeys were more sensitive to the relative reinforcing strength of cocaine than dominant monkeys.
Resumo:
Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.