35 resultados para Negative Binomial Regression Model (NBRM)
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6 weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2–4), citric acid (2–15 g/l), protein (0–10 g/l), and dietary fibre (0–8 g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P < 0.05) negative effect on the log decrease [log10N0 week−log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4 log decrease) after 6 weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5 log, whereas of the latter was ∼0.7 log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3 g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8 logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices.
Resumo:
Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.
Resumo:
Purpose – The purpose of this paper is to propose a process model for knowledge transfer in using theories relating knowledge communication and knowledge translation. Design/methodology/approach – Most of what is put forward in this paper is based on a research project titled “Procurement for innovation and knowledge transfer (ProFIK)”. The project is funded by a UK government research council – The Engineering and Physical Sciences Research Council (EPSRC). The discussions are mainly grounded on a thorough review of literature accomplished as part of the research project. Findings – The process model developed in this paper has built upon the theory of knowledge transfer and the theory of communication. Knowledge transfer, per se, is not a mere transfer of knowledge. It involves different stages of knowledge transformation. Depending on the context of knowledge transfer, it can also be influenced by many factors; some positive and some negative. The developed model of knowledge transfer attempts to encapsulate all these issues in order to create a holistic framework. Originality/value of paper – An attempt has been made in the paper to combine some of the significant theories or findings relating to knowledge transfer together, making the paper an original and valuable one.
Resumo:
This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included
Resumo:
Atmospheric Rivers (ARs), narrow plumes of enhanced moisture transport in the lower troposphere, are a key synoptic feature behind winter flooding in midlatitude regions. This article develops an algorithm which uses the spatial and temporal extent of the vertically integrated horizontal water vapor transport for the detection of persistent ARs (lasting 18 h or longer) in five atmospheric reanalysis products. Applying the algorithm to the different reanalyses in the vicinity of Great Britain during the winter half-years of 1980–2010 (31 years) demonstrates generally good agreement of AR occurrence between the products. The relationship between persistent AR occurrences and winter floods is demonstrated using winter peaks-over-threshold (POT) floods (with on average one flood peak per winter). In the nine study basins, the number of winter POT-1 floods associated with persistent ARs ranged from approximately 40 to 80%. A Poisson regression model was used to describe the relationship between the number of ARs in the winter half-years and the large-scale climate variability. A significant negative dependence was found between AR totals and the Scandinavian Pattern (SCP), with a greater frequency of ARs associated with lower SCP values.
Resumo:
A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.
Resumo:
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications.
Resumo:
Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.
Resumo:
We propose a geoadditive negative binomial model (Geo-NB-GAM) for regional count data that allows us to address simultaneously some important methodological issues, such as spatial clustering, nonlinearities, and overdispersion. This model is applied to the study of location determinants of inward greenfield investments that occurred during 2003–2007 in 249 European regions. After presenting the data set and showing the presence of overdispersion and spatial clustering, we review the theoretical framework that motivates the choice of the location determinants included in the empirical model, and we highlight some reasons why the relationship between some of the covariates and the dependent variable might be nonlinear. The subsequent section first describes the solutions proposed by previous literature to tackle spatial clustering, nonlinearities, and overdispersion, and then presents the Geo-NB-GAM. The empirical analysis shows the good performance of Geo-NB-GAM. Notably, the inclusion of a geoadditive component (a smooth spatial trend surface) permits us to control for spatial unobserved heterogeneity that induces spatial clustering. Allowing for nonlinearities reveals, in keeping with theoretical predictions, that the positive effect of agglomeration economies fades as the density of economic activities reaches some threshold value. However, no matter how dense the economic activity becomes, our results suggest that congestion costs never overcome positive agglomeration externalities.
Resumo:
This study investigates variability in the intensity of the wintertime Siberian high (SH) by defining a robust SH index (SHI) and correlating it with selected meteorological fields and teleconnection indices. A dramatic trend of -2.5 hPa decade(-1) has been found in the SHI between 1978 and 2001 with unprecedented (since 1871) low values of the SHI. The weakening of the SH has been confirmed by analyzing different historical gridded analyses and individual station observations of sea level pressure (SLP) and excluding possible effects from the conversion of surface pressure to SLP. SHI correlation maps with various meteorological fields show that SH impacts on circulation and temperature patterns extend far outside the SH source area extending from the Arctic to the tropical Pacific. Advection of warm air from eastern Europe has been identified as the main mechanism causing milder than normal conditions over the Kara and Laptev Seas in association with a strong SH. Despite the strong impacts of the variability in the SH on climatic variability across the Northern Hemisphere, correlations between the SHI and the main teleconnection indices of the Northern Hemisphere are weak. Regression analysis has shown that teleconnection indices are not able to reproduce the interannual variability and trends in the SH. The inclusion of regional surface temperature in the regression model provides closer agreement between the original and reconstructed SHI.
Resumo:
The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.
Resumo:
Given the growing impact of human activities on the sea, managers are increasingly turning to marine protected areas (MPAs) to protect marine habitats and species. Many MPAs have been unsuccessful, however, and lack of income has been identified as a primary reason for failure. In this study, data from a global survey of 79 MPAs in 36 countries were analysed and attempts made to construct predictive models to determine the income requirements of any given MPA. Statistical tests were used to uncover possible patterns and relationships in the data, with two basic approaches. In the first of these, an attempt was made to build an explanatory "bottom-up" model of the cost structures that might be required to pursue various management activities. This proved difficult in practice owing to the very broad range of applicable data, spanning many orders of magnitude. In the second approach, a "top-down" regression model was constructed using logarithms of the base data, in order to address the breadth of the data ranges. This approach suggested that MPA size and visitor numbers together explained 46% of the minimum income requirements (P < 0.001), with area being the slightly more influential factor. The significance of area to income requirements was of little surprise, given its profile in the literature. However, the relationship between visitors and income requirements might go some way to explaining why northern hemisphere MPAs with apparently high incomes still claim to be under-funded. The relationship between running costs and visitor numbers has important implications not only in determining a realistic level of funding for MPAs, but also in assessing from where funding might be obtained. Since a substantial proportion of the income of many MPAs appears to be utilized for amenity purposes, a case may be made for funds to be provided from the typically better resourced government social and educational budgets as well as environmental budgets. Similarly visitor fees, already an important source of funding for some MPAs, might have a broader role to play in how MPAs are financed in the future. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fixed transactions costs that prohibit exchange engender bias in supply analysis due to censoring of the sample observations. The associated bias in conventional regression procedures applied to censored data and the construction of robust methods for mitigating bias have been preoccupations of applied economists since Tobin [Econometrica 26 (1958) 24]. This literature assumes that the true point of censoring in the data is zero and, when this is not the case, imparts a bias to parameter estimates of the censored regression model. We conjecture that this bias can be significant; affirm this from experiments; and suggest techniques for mitigating this bias using Bayesian procedures. The bias-mitigating procedures are based on modifications of the key step that facilitates Bayesian estimation of the censored regression model; are easy to implement; work well in both small and large samples; and lead to significantly improved inference in the censored regression model. These findings are important in light of the widespread use of the zero-censored Tobit regression and we investigate their consequences using data on milk-market participation in the Ethiopian highlands. (C) 2004 Elsevier B.V. All rights reserved.