9 resultados para NG-monomethyl-L-arginine

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75.)d]) every 2 h without (27.0 g of N/kg of DM) and. with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion Of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic 02 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal Of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose— Endothelium-derived hyperpolarizing factor (EDHF) and K+ are vasodilators in the cerebral circulation. Recently, K+ has been suggested to contribute to EDHF-mediated responses in peripheral vessels. The EDHF response to the protease-activated receptor 2 ligand SLIGRL was characterized in cerebral arteries and used to assess whether K+ contributes as an EDHF. Methods— Rat middle cerebral arteries were mounted in either a wire or pressure myograph. Concentration-response curves to SLIGRL and K+ were constructed in the presence and absence of a variety of blocking agents. In some experiments, changes in tension and smooth muscle cell membrane potential were recorded simultaneously. Results— SLIGRL (0.02 to 20 μmol/L) stimulated concentration and endothelium-dependent relaxation. In the presence of NG-nitro-L-arginine methyl ester, relaxation to SLIGRL was associated with hyperpolarization and sensitivity to a specific inhibitor of IKCa, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (1μmol/L), reflecting activation of EDHF. Combined inhibition of KIR with Ba2+ (30μmol/L) and Na+/K+-ATPase with ouabain (1 μmol/L) markedly attenuated the relaxation to EDHF. Raising extracellular [K+] to 15 mmol/L also stimulated smooth muscle relaxation and hyperpolarization, which was also attenuated by combined application of Ba2+ and ouabain. Conclusions— SLIGRL evokes EDHF-mediated relaxation in the rat middle cerebral artery, underpinned by hyperpolarization of the smooth muscle. The profile of blockade of EDHF-mediated hyperpolarization and relaxation supports a pivotal role for IKCa channels. Furthermore, similar inhibition of responses to EDHF and exogenous K+ with Ba2+ and ouabain suggests that K+ may contribute as an EDHF in the middle cerebral artery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral supplements of arginine and citrulline increase local nitric oxide (NO production in the small intestine and this may be harmful under certain circumstances. Gastrointestinal toxicity was therefore reviewed with respect to the intestinal physiology of arginine, citrulline, ornithine, and cystine (which shares the same transporter) and the many clinical trials of supplements of the dibasic amino acids or N-acetylcysteine (NAC. The human intestinal dibasic amino acid transport system has high affinity and low capacity. L-Arginine (but not lysine, ornithine, or D-arginine) induces water and electrolyte secretion that is mediated by NO, which acts as an absorbagogue at low levels and as a secretagogue at high levels. The action of many laxatives is NO mediated and there are reports of diarrhea following oral administration of arginine or ornithine ihine. The clinical data cover a wide span of arginine intakes f rom 3 g/d to > 100 g/d, but the standard of reporting adverse effects (e.g. nausea, vomiting, and diarrhea) was variable. Single doses of 3-6 g rarely provoked side effects and healthy athletes appeared to be more susceptible than diabetic patients to gastrointestinal symptoms at individual doses >9 g. This may relate to an effect of disease on gastrointestinal motility and pharmacokinetics. Most side effects of arginine and NAC occurred at single doses of >9 g in adults >140 mg/kg) often when part of a daily regime of similar to>30 g/d (>174 mmol/d). In the case of arginine, this compares with the laxative threshold of the nonabsorbed disaccharide alcohol, lactitol (74 g or 194 mmol). Adverse effects seemed dependent on the dosage regime and disappeared if divided doses were ingested (unlike lactitol). Large single doses of poorly absorbed amino acids seem to provoke diarrhea. More research is needed to refine dosage strategies that reduce this phenomenon. It is suggested that dipeptide forms of arginine may meet this criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ClearfLo project provides integrated measurements of the meteorology, composition and particulate loading of London's urban atmosphere to improve predictive capability for air quality. Air quality and heat are strong health drivers and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants such as ozone, nitrogen dioxide, and fine and coarse particulate matter in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the ClearfLo project's interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures. Within ClearfLo (www.clearflo.ac.uk), a large multi-institutional project funded by the UK Natural Environment Research Council (NERC), integrated measurements of meteorology, gaseous and particulate composition/loading within London's atmosphere were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and elevated), and at urban background, kerbside and rural locations were complemented with high-resolution numerical atmospheric simulations . Combining these (measurement/modeling) enhances understanding of seasonal variations in meteorology and composition together with the controlling processes. Two intensive observation periods (winter 2012 and summer Olympics 2012) focus upon the vertical structure and evolution of the urban boundary layer, chemical controls on nitrogen dioxide and ozone production, in particular the role of volatile organic compounds, and processes controlling the evolution, size, distribution and composition of particulate matter. The paper shows that mixing heights are deeper over London than in the rural surroundings and the seasonality of the urban boundary layer evolution controls when concentrations peak. The composition also reflects the seasonality of sources such as domestic burning and biogenic emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace element measurements in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too small a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient concentrations of trace elements with 2 h time resolution were measured in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 10.4 to 16.6 for SW winds (3.3–6.9 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.7 to 8.2 for SW (2.6–3.0 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10–2.5 mass fraction, roughly twice that of the PM1.0–0.3 fraction. These elements also showed the highest urban increments (~ 3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic exhibited higher concentrations during morning and evening rush hours, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (3.4–5.4 for SW, 1.7–2.3 for NE) and urban (~ 2) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10–2.5 sea salt (factor of up to 2), which may be influenced by traffic-induced resuspension of sea and/or road salt. Heavy-duty vehicles appeared to have a larger effect than passenger vehicles on the concentrations of all elements influenced by resuspension (including sea salt) and wearing processes. Trace element concentrations in London were influenced by both local and regional sources, with coarse and intermediate fractions dominated by traffic-induced resuspension and wearing processes and fine particles influenced by regional transport.