8 resultados para Magnetometry

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromium(II) antimony(III) sulphicle, [Cr((NH2CH2CH2)(3)N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3. Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction. elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P2(1)/n with a = 7.9756(7), b = 10.5191(9), c = 25.880(2) angstrom and beta = 90.864(5)degrees. Alternating SbS33- trigonal pyramids and Sb36 semi-cubes generate Sb4S72- chains which are directly bonded to Cr(tren pendant units. The effective magnetic moment of 4.94(6)mu(B) shows a negligible orbital contribution, in agreement with expectations for Cr(II):d(4) in a (5)A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new chromium-antimony-sulfide, [Cr(C6H18N4)(SbS3)], has been synthesised under solvothermal conditions from CrCl3. 6H(2)O, Sb2S3 and S in the presence of triethylenetetramine at 433 K and characterised by single-crystal X-ray diffraction, thermogravimetry, elemental analysis and SQUID magnetometry. The structure of [Cr(C6H18N4)(SbS3)] consists of neutral mononuclear chromium-centred complexes, in which the Cr3+ is chelated by one tetradentate triethylenetetramine molecule and a bidentate SbS33- ligand, yielding distorted octahedral coordination. Intermolecular hydrogen bonds link individual molecules into layers within the ac plane. Within a layer, molecules occur in pairs with each member related by a centre of inversion. The Cr...Cr separation within a pair is approximately 6.5 Angstrom. Magnetic susceptibility data reveal Curie-Weiss behaviour with mu(eff) = 3.819(3)/mu(B) and a negligible Weiss constant, indicative of non-interacting Cr3+ ions. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [nBu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV–vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO22+. NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4– is delocalized over all NCS– ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8]4– (An = Th, U) and [UO2(NCS)5]3– has been explored by a combination of DFT and QTAIM analysis, and the U–N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)–NCS ion is more ionic than what was found for U(IV)–Cl complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new series of non-stoichiometric sulfides Ga1−xGexV4S8−δ (0≤x≤1; δ≤0.23) has been synthesized at high temperatures by heating stoichiometric mixtures of the elements in sealed quartz tubes. The samples have been characterized by powder X-ray diffraction, SQUID magnetometry and electrical transport-property measurements. Structural analysis reveals that a solid solution is formed throughout this composition range, whilst thermogravimetric data reveal sulfur deficiency of up to 2.9% in the quaternary phases. Magnetic measurements suggest that the ferromagnetic behavior of the end-member phase GaV4S8 is retained at x≤0.7; samples in this composition range showing a marked increase in magnetization at low temperatures. By contrast Ga0.25Ge0.75V4S8−δ appears to undergo antiferromagnetic ordering at ca. 15 K. All materials with x≠1 are n-type semiconductors whose resistivity falls by almost six orders of magnitude with decreasing Ga content, whilst the end-member phase GeV4S8−δ is a p-type semiconductor. The results demonstrate that the physical properties are determined principally by the degree of electron filling of narrow-band states arising from intracluster V–V interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals’ gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25 % higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space.