61 resultados para MOUSE EMBRYOS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Micro-computed tomography (μCT) has been successfully used to study the cardiovascular system of mouse embryos in situ. With the use of barium as a suitable contrast agent, blood vessels have been imaged and analysed quantitatively such as blood volume and vessel sizes on embryos of ages 14.5 to 16.5 days old. The advantage of using this imaging modality is that it has provided three dimensional information whilst leaving samples intact for further study.
Resumo:
Interactions using a standard computer mouse can be particularly difficult for novice and older adult users. Tasks that involve positioning the mouse over a target and double-clicking to initiate some action can be a real challenge for many users. Hence, this paper describes a study that investigates the double-click interactions of older and younger adults and presents data that can help inform the development of methods of assistance. Twelve older adults (mean age = 63.9 years) and 12 younger adults (mean age = 20.8 years) performed click and double-click target selections with a computer mouse. Initial results show that older users make approximately twice as many errors as younger users when attempting double-clicks. For both age groups, the largest proportion of errors was due to difficulties with keeping the cursor steady between button presses. Compared with younger adults, older adults experienced more difficulties with performing two button presses within a required time interval. Understanding these interactions better is a step towards improving accessibility, and may provide some suggestions for future directions of research in this area.
Resumo:
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.
Resumo:
The inability to conserve cocoa (Theobroma cacao L.) germplasm via sced storage and the vulnerability of field collections make the establishment of cryopreserved genebanks for the crop a priority. An effective encapsulation-dehydration based cryopreservation system has been developed for cocoa but because the somatic embryos used for freezing arise after a protracted period of callus culture there is concern about maintenance of genetic fidelity during the process. Microsatellite markers for seven of the 10 cocoa linkage groups were used to screen a population of 189 primary somatic embryo-derived emblings and the 43 secondary somatic embryos they gave rise to. Of the primary somatic embryos, 38.1% exhibited polymorphic microsatellite profiles while for secondary somatic embryos the frequency was 23.3%. The same microsatellite markers used to screen another population of 44 secondary somatic embryos cryopreserved through encapsulation-dehydration revealed no polymorphisms. Scanning electron microscopy showed the secondary somatic embryos were derived from cotyledonary epidermal cells rather than callus. The influence of embryo ontogeny on somaclonal variation is discussed.
Resumo:
Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08-1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60-95% was recorded for embryos exposed to 0.5-1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H2O g(-1)dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.
Resumo:
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.
Resumo:
An attenuated strain (263) of the tick-borne encephalitis virus, isolated from field ticks, was either serially subcultured, 5 times in mice, or at 40 degrees C in PS cells, producing 2 independent strains, 263-m5 and 263-TR with identical genomes; both strains exhibited increased plaque size, neuroinvasiveness and temperature-resistance. Sequencing revealed two unique amino acid substitutions, one mapping close to the catalytic site of the viral protease. These observations imply that virus adaptation from ticks to mammals occurs by selection of pre-existing virulent variants from the quasispecies population rather than by the emergence of new random mutations. The significance of these observations is discussed. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Here, we report the identification of a metastasis promoting factor by a forward genetic screen in mice. A retroviral cDNA library was introduced into the nonmetastatic cancer cell line 168FARN, which was then orthotopically transplanted into mouse mammary fat pads, followed by selection for cells that metastasize to the lung. The genes encoding the disulfide isomerase ERp5 and beta-catenin were found to promote breast cancer invasion and metastasis. Disulfide isomerases (thiol isomerases), which catalyze disulfide bond formation, reduction, and isomerization, have not previously been implicated in cancer cell signaling and tumor metastasis. Overexpression of ERp5 promotes both in vitro migration and invasion and in vivo metastasis of breast cancer cells. These effects were shown to involve activation of ErbB2 and phosphoinositicle 3-kinase (PI3K) pathways through dimerization of ErbB2. Activation of ErbB2 and PI3K subsequently stimulates RhoA and beta-catenin, which mediate the migration and invasion of tumor cells. Inhibition of ErbB2 and PI3K reverses the phenotypes induced by ERp5. Finally, ERp5 was shown to be up-regulated in human surgical samples of invasive breast cancers. These data identify a link between disulfide isomerases and tumor development, and provide a mechanism that modulates ErbB2 and PI3K signaling in the promotion of cancer progression.
Resumo:
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK, receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RTPCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin INK, receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK, receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK, receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.
Resumo:
Cryopreservation using encapsulation-dehydration was developed for the long-term conservation of cocoa (Theobroma cacao L.) germplasm. Survival of individually encapsulated somatic embryos after desiccation and cryopreservation was achieved through optimization of cryoprotectants (abscisic acid (ABA) and sugar), duration of osmotic and evaporative dehydration, and embryo development stage. Up to 63% of the genotype SPA4 early-cotyledonary somatic embryos survived cryopreservation following 7 days preculture with 1 M sucrose and 4 h silica exposure (16% moisture content in bead). This optimized protocol was successfully applied to three other genotypes, e.g. EET272, IMC14 and AMAZ12, with recovery frequencies of 25, 40 and 72%, respectively (but the latter two genotypes using 0.75 M sucrose). Recovered SPA4 somatic embryos converted to plants at a rate of 33% and the regenerated plants were phenotypically comparable to non-cryopreserved somatic embryo-derived plants.
Resumo:
Measurement of inhibins A and B in the serum of normal cyclic rodents has implicated FSH in the regulation of these peptides within the ovary. To extend these observations we have used a panel of mutant mice carrying mutations which affect either the production of, or the ability to respond to, FSH and LH. As a consequence, the females are infertile and show different degrees of follicular development. The aim of this study was to measure inhibin gene transcription in the ovaries of these mutant females together with inhibin protein levels in ovaries and serum and to relate these to follicular development within the ovary. Comparison was made with a pool of normal/heterozygous females. In hpg females where lack of GnRH production results in the absence of gonadotropin synthesis, in FSHbeta knockout (FSHbetaKO) females where disruption of the gene encoding FSHbeta results in the absence of FSH production, and in FSH receptor knockout (FSHRKO) females which are unable to respond to circulating FSH, follicular development remains at the pre-antral stage in these three mutants. Only in the hpg females were common inhibin alpha subunit mRNA levels significantly lower than normal. In these three mutants, however, mRNA levels for both the betaA and betaB subunits were extremely low compared with normal mice. At the protein level, neither inhibin A nor B was detected in the serum of these three mutants; however inhibin B, albeit at very low levels, was detectable within the ovaries. These observations confirm a major role for FSH in the control of transcription of the RA and betaB genes but suggest that the constitutive transcription of the alpha subunit is less dependent on FSH. In contrast, in LH receptor knockout (LuRKO) female mice inhibin betaA subunit mRNA levels were similar to those measured in normal/heterozygous females but levels of inhibin alpha and betaB subunit mRNAs were significantly higher than in the normal group. This was reflected in significantly higher inhibin B protein levels in ovaries and serum. An inability to respond to LH combined with high circulating levels of FSH leads to a high proportion of antral follicles in LuRKO females, with granulosa cells constituting the major cell type within the ovary. The high percentage of antral granulosa cells is likely to account for the significantly higher levels of inhibin B production in these ovaries.
Resumo:
The present invention provides Inter alia, a method for the production of cotton somatic embryos comprising (a) isolating a totipotent stomatal cell-containing epidermal explant from leaf material excised from a cotton plant; and (b) culturing said explant in a basal medium which comprises an embryogenic callus-inducing quantity of an auxin and a cytokinin under an embryogenic callus inducing intensity of light until embryogenic callus is formed; and (c) sub-culturing said embryogenic callus onto a somatic embryo differentiation media to produce said somatic embryos. Plants may be regenerated from the somatic embryos and in a particular embodiment of the invention said totipotent stomatal cell is transformed, prior to the inducement of embryogenic callus, with a polynucleotide that provides for a desired agronomic trait.
Resumo:
In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.
Resumo:
Small mammals and stray cats were trapped in two areas of North Zealand, Denmark, and their blood cultured for hemotrophic bacteria. Bacterial isolates were recovered in pure culture and subjected to 16S rDNA gene sequencing. Bartonella species were isolated from five mammalian species: B. grahamii from Microtus agrestis (field vole) and Apodemus flavicollis (yellow-necked field mouse); B. taylorii from M. agrestis, A. flavicollis and A. sylvaticus (long-tailed field mouse); B. tribocorum from A. flavicollis; R vinsonii subsp. vinsonii from M. agrestis and A. sylvaticus; and B. birtlesii from Sorex vulgaris (common shrew). In addition, two variant types of B. henselae were identified: variant I was recovered from three specimens of A. sylvaticus, and B. henselae variant 11 from I I cats; in each case this was the only B. henselae variant found. No Bartonella species was isolated from Clethrionomys glareolus (bank vole) or Micromys minutus (harvest mouse). These results suggest that B. henselae occurs in two animal reservoirs in this region, one of variant I in A. sylvaticus, which may be transmitted between mice by the tick Ixodes ricinus, and another of variant 11 in cats, which may be transmitted by the cat flea (Ctenocephalides felis). To our knowledge, this is the first report of the occurrence of B. henselae and B. tribocorum in Apodemus mice.