60 resultados para MODEL-DRIVEN DEVELOPMENT
em CentAUR: Central Archive University of Reading - UK
Resumo:
This article examines the problems of elite capture in community driven development (CDD). Drawing on two case studies of non-governmental organisation (NGO) intervention in rural Mozambique, the authors consider two important variables – 1) the diverse and complex contributions of local elites to CDD in different locations, and 2) the roles that non-elites play in monitoring and controlling leader activities – to argue that donors should be cautious about automatically assuming the prevalence of malevolent patrimonialism and its ill-effects in their projects. This is because the ‘checks and balances’ on elite behaviour that exist within locally-defined and historically-rooted forms of community-based governance are likely to be more effective than those introduced by the external intervener.
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes
Resumo:
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.
Resumo:
Purpose – The purpose of this paper is to investigate the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Design/methodology/approach – Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. Findings – It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, that simple and simplistic models may produce similar outputs to more robust and disaggregated models. Evidence is found of equifinality in the outputs of a simple, aggregated model of development viability relative to more complex, disaggregated models. Originality/value – Development viability appraisal has become increasingly important in the planning system. Consequently, the theory, application and outputs from development appraisal are under intense scrutiny from a wide range of users. However, there has been very little published evaluation of viability models. This paper contributes to the limited literature in this area.
Resumo:
A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative–convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions. Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtained in the reference-column configuration if the two simulated columns have very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The reference-column configuration has been used to study the convection in a local region under the influence of a large-scale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.
Resumo:
Reanalysis data obtained from data assimilation are increasingly used for diagnostic studies of the general circulation of the atmosphere, for the validation of modelling experiments and for estimating energy and water fluxes between the Earth surface and the atmosphere. Because fluxes are not specifically observed, but determined by the data assimilation system, they are not only influenced by the utilized observations but also by model physics and dynamics and by the assimilation method. In order to better understand the relative importance of humidity observations for the determination of the hydrological cycle, in this paper we describe an assimilation experiment using the ERA40 reanalysis system where all humidity data have been excluded from the observational data base. The surprising result is that the model, driven by the time evolution of wind, temperature and surface pressure, is able to almost completely reconstitute the large-scale hydrological cycle of the control assimilation without the use of any humidity data. In addition, analysis of the individual weather systems in the extratropics and tropics using an objective feature tracking analysis indicates that the humidity data have very little impact on these systems. We include a discussion of these results and possible consequences for the way moisture information is assimilated, as well as the potential consequences for the design of observing systems for climate monitoring. It is further suggested, with support from a simple assimilation study with another model, that model physics and dynamics play a decisive role for the hydrological cycle, stressing the need to better understand these aspects of model parametrization. .
Resumo:
Libya with its strategic location and natural resources stands as a crucial link between the Arab world, Europe, and Africa. The people of Libya have an optimistic outlook with regard to the Libyan economy after the suspension of the United Nations sanctions in 1999 that had been imposed on Libya in 1992, as well as the recent emphasis on privatization from the government. Since then, local and foreign investors have been encouraged to take a more prominent role in order to help privatize some of the state run-industries; the attention to privatization is aimed to help Libya’s economic growth and reduce its heavy dependency on oil revenues. Considering the economic situation, Libya is a rich country. However, it needs to modernize, it needs more and better infrastructure, it needs non-oil based financing, furthermore, it needs to develop a financial model for development and investment from the private sector. Although the Libyan government is working on the improvement of the business environment to make it more attractive for foreign investors in a way to move towards privatization, they have ignored some of the challenges that privatization will be facing in Libya. Privatization can not be implemented overnight. They have taken this for granted without careful consideration of its challenges. This paper attempts to investigate and discuss the challenges that need to be taken into account before privatization of infrastructure projects can be introduced in Libya. This paper is based on interviews with senior technical officials in the government.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
A focus on crisis provides a methodological window to understand how agrarian change shapes producer engagement in fair trade. This orientation challenges a seperation between the market and development, situating fair trade within global processes that incorporate agrarian histories of social change and conflict. Reframing crisis as a condition of agrarian life, rather than emphasizing its cyclical manifestation within the global economy, reveals how market-driven development encompasses the material conditions of peoples' existence in ambiguous and contradictory ways. Drawing on the case of coffee production in Nicaragua, experiences of crisis demonstrate that greater attention needs to be paid to the socioeconomic and political dimensions of development within regional commodity assemblages to address entrenched power relations and unequal access to land and resources. This questions moral certainties when examining the paradox of working in and against the market, and suggests that a better understanding of specific trajectories of development could improve fair trade's objective of enhancing producer livelihoods.
Resumo:
In the tropical middle atmosphere the climatological radiative equilibrium temperature is inconsistent with gradient-wind balance and the available angular momentum, especially during solstice seasons. Adjustment toward a balanced state results in a type of Hadley circulation that lies outside the “downward control” view of zonally averaged dynamics. This middle-atmosphere Hadley circulation is reexamined here using a zonally symmetric balance model driven through an annual cycle. It is found that the inclusion of a realistic radiation scheme leads to a concentration of the circulation near the stratopause and to its closing off in the mesosphere, with no need for relaxational damping or a rigid lid. The evolving zonal flow is inertially unstable, leading to a rapid process of inertial adjustment, which becomes significant in the mesosphere. This short-circuits the slower process of angular momentum homogenization by the Hadley circulation itself, thereby weakening the latter. The effect of the meridional circulation associated with extratropical wave drag on the Hadley circulation is considered. It is shown that the two circulations are independent for linear (quasigeostrophic) zonal-mean dynamics, and interact primarily through the advection of temperature and angular momentum. There appears to be no significant coupling in the deep Tropics via temperature advection since the wave-driven circulation is unable to alter meridional temperature gradients in this region. However, the wave-driven circulation can affect the Hadley circulation by advecting angular momentum out of the Tropics. The validity of the zonally symmetric balance model with parameterized inertial adjustment is tested by comparison with a three-dimensional primitive equations model. Fields from a middle-atmosphere GCM are also examined for evidence of these processes. While many aspects of the GCM circulation are indicative of the middle-atmosphere Hadley circulation, particularly in the upper stratosphere, it appears that the circulation is obscured in the mesosphere and lower stratosphere by other processes.
Resumo:
ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.
Resumo:
The advancement of e-learning technologies has made it viable for developments in education and technology to be combined in order to fulfil educational needs worldwide. E-learning consists of informal learning approaches and emerging technologies to support the delivery of learning skills, materials, collaboration and knowledge sharing. E-learning is a holistic approach that covers a wide range of courses, technologies and infrastructures to provide an effective learning environment. The Learning Management System (LMS) is the core of the entire e-learning process along with technology, content, and services. This paper investigates the role of model-driven personalisation support modalities in providing enhanced levels of learning and trusted assimilation in an e-learning delivery context. We present an analysis of the impact of an integrated learning path that an e-learning system may employ to track activities and evaluate the performance of learners.