7 resultados para Localization system
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.
Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system
Resumo:
BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.
Resumo:
Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.
Resumo:
A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).
Resumo:
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.
Resumo:
This paper investigates the effect on balance of a number of Schur product-type localization schemes which have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes, namely a simplified version of SENCORP (Smoothed ENsemble COrrelations Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper shows, we believe for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately but also minimizes disruption of balance (where the 'correct' degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order' of each scheme, and the degree of ensemble smoothing), it is found that a particular configuration of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our diagnostics this ECO-RAP configuration still weakens geostrophic and hydrostatic balance, but overall this is less so than for other schemes.