8 resultados para LS-DYNA
em CentAUR: Central Archive University of Reading - UK
Resumo:
The notion that learning can be enhanced when a teaching approach matches a learner’s learning style has been widely accepted in classroom settings since the latter represents a predictor of student’s attitude and preferences. As such, the traditional approach of ‘one-size-fits-all’ as may be applied to teaching delivery in Educational Hypermedia Systems (EHSs) has to be changed with an approach that responds to users’ needs by exploiting their individual differences. However, establishing and implementing reliable approaches for matching the teaching delivery and modalities to learning styles still represents an innovation challenge which has to be tackled. In this paper, seventy six studies are objectively analysed for several goals. In order to reveal the value of integrating learning styles in EHSs, different perspectives in this context are discussed. Identifying the most effective learning style models as incorporated within AEHSs. Investigating the effectiveness of different approaches for modelling students’ individual learning traits is another goal of this study. Thus, the paper highlights a number of theoretical and technical issues of LS-BAEHSs to serve as a comprehensive guidance for researchers who interest in this area.
Resumo:
A pot experiment was conducted to test the hypothesis that decomposition of organic matter in sewage sludge and the consequent formation of dissolved organic compounds (DOC) would lead to an increase in the bioavailability of the heavy metals. Two Brown Earth soils, one with clayey loam texture (CL) and the other a loamy sand (LS) were mixed with sewage sludge at rates equivalent to 0, 10 and 50 1 dry sludge ha(-1) and the pots were sown with ryegrass (Lolium perenne L.). The organic matter content and heavy metal availability assessed with soil extractions with 0.05 M CaCl2 were monitored over a residual time of two years, while plant uptake over one year, after addition of the sludge. It was found that the concentrations of Cd and Ni in both the ryegrass and the soil extracts increased slightly but significantly during the first year. In most cases, this increase was most evident especially at the higher sludge application rate (50 t ha(-1)). However, in the second year metal availability reached a plateau. Zinc concentrations in the ryegrass did not show an increase but the CaCl2 extracts increased during the first year. In contrast, organic matter content decreased rapidly in the first months of the first year and much more slowly in the second (total decrease of 16%). The concentrations of DOC increased significantly in the more organic rich CL soil in the course of two years. The pattern followed by the decomposition of organic matter with time and the production of DOC may provide at least a partial explanation for trend towards increased metal availability.
Resumo:
CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer(ACE-FTS) on Canada’s SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an “instantaneous climatology”. This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACEFTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.
Resumo:
We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process‐oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model’s ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return‐to‐1980 dates for global (60°S–60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model’s circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return‐to‐1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies.
Resumo:
In wireless communication systems, all in-phase and quadrature-phase (I/Q) signal processing receivers face the problem of I/Q imbalance. In this paper, we investigate the effect of I/Q imbalance on the performance of multiple-input multiple-output (MIMO) maximal ratio combining (MRC) systems that perform the combining at the radio frequency (RF) level, thereby requiring only one RF chain. In order to perform the MIMO MRC, we propose a channel estimation algorithm that accounts for the I/Q imbalance. Moreover, a compensation algorithm for the I/Q imbalance in MIMO MRC systems is proposed, which first employs the least-squares (LS) rule to estimate the coefficients of the channel gain matrix, beamforming and combining weight vectors, and parameters of I/Q imbalance jointly, and then makes use of the received signal together with its conjugation to detect the transmitted signal. The performance of the MIMO MRC system under study is evaluated in terms of average symbol error probability (SEP), outage probability and ergodic capacity, which are derived considering transmission over Rayleigh fading channels. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of I/Q imbalance.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.
Resumo:
Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.