8 resultados para Information complexity

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the increase in e-commerce and the digitisation of design data and information,the construction sector has become reliant upon IT infrastructure and systems. The design and production process is more complex, more interconnected, and reliant upon greater information mobility, with seamless exchange of data and information in real time. Construction small and medium-sized enterprises (CSMEs), in particular,the speciality contractors, can effectively utilise cost-effective collaboration-enabling technologies, such as cloud computing, to help in the effective transfer of information and data to improve productivity. The system dynamics (SD) approach offers a perspective and tools to enable a better understanding of the dynamics of complex systems. This research focuses upon system dynamics methodology as a modelling and analysis tool in order to understand and identify the key drivers in the absorption of cloud computing for CSMEs. The aim of this paper is to determine how the use of system dynamics (SD) can improve the management of information flow through collaborative technologies leading to improved productivity. The data supporting the use of system dynamics was obtained through a pilot study consisting of questionnaires and interviews from five CSMEs in the UK house-building sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexity is integral to planning today. Everyone and everything seem to be interconnected, causality appears ambiguous, unintended consequences are ubiquitous, and information overload is a constant challenge. The nature of complexity, the consequences of it for society, and the ways in which one might confront it, understand it and deal with it in order to allow for the possibility of planning, are issues increasingly demanding analytical attention. One theoretical framework that can potentially assist planners in this regard is Luhmann's theory of autopoiesis. This article uses insights from Luhmann's ideas to understand the nature of complexity and its reduction, thereby redefining issues in planning, and explores the ways in which management of these issues might be observed in actual planning practice via a reinterpreted case study of the People's Planning Campaign in Kerala, India. Overall, this reinterpretation leads to a different understanding of the scope of planning and planning practice, telling a story about complexity and systemic response. It allows the reinterpretation of otherwise familiar phenomena, both highlighting the empirical relevance of the theory and providing new and original insight into particular dynamics of the case study. This not only provides a greater understanding of the dynamics of complexity, but also produces advice to help planners implement structures and processes that can cope with complexity in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect of choices of model structure and scale in development viability appraisal. The paper addresses two questions concerning the application of development appraisal techniques to viability modelling within the UK planning system. The first relates to the extent to which, given intrinsic input uncertainty, the choice of model structure significantly affects model outputs. The second concerns the extent to which, given intrinsic input uncertainty, the level of model complexity significantly affects model outputs. Monte Carlo simulation procedures are applied to a hypothetical development scheme in order to measure the effects of model aggregation and structure on model output variance. It is concluded that, given the particular scheme modelled and unavoidably subjective assumptions of input variance, simple and simplistic models may produce similar outputs to more robust and disaggregated models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A causal explanation provides information about the causal history of whatever is being explained. However, most causal histories extend back almost infinitely and can be described in almost infinite detail. Causal explanations therefore involve choices about which elements of causal histories to pick out. These choices are pragmatic: they reflect our explanatory interests. When adjudicating between competing causal explanations, we must therefore consider not only questions of epistemic adequacy (whether we have good grounds for identifying certain factors as causes) but also questions of pragmatic adequacy (whether the aspects of the causal history picked out are salient to our explanatory interests). Recognizing that causal explanations differ pragmatically as well as epistemically is crucial for identifying what is at stake in competing explanations of the relative peacefulness of the nineteenth-century Concert system. It is also crucial for understanding how explanations of past events can inform policy prescription.