56 resultados para Indoor radio
em CentAUR: Central Archive University of Reading - UK
Resumo:
The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System (GNSS) radio occultation (RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an (climate) observing system simulation experiment over the 25-year period 2001 to 2025, which involves quasi-realistic modeling of the neutral atmosphere and the ionosphere. We carried out two climate simulations with the general circulation model MAECHAM5 (Middle Atmosphere European Centre/Hamburg Model Version 5) of the MPI-M Hamburg, covering the period 2001–2025: One control run with natural variability only and one run also including anthropogenic forcings due to greenhouse gases, sulfate aerosols, and tropospheric ozone. On the basis of this, we perform quasi-realistic simulations of RO observables for a small GNSS receiver constellation (six satellites), state-of-the-art data processing for atmospheric profiles retrieval, and a statistical analysis of temperature trends in both the “observed” climatology and the “true” climatology. Here we describe the setup of the experiment and results from a test bed study conducted to obtain a basic set of realistic estimates of observational errors (instrument- and retrieval processing-related errors) and sampling errors (due to spatial-temporal undersampling). The test bed results, obtained for a typical summer season and compared to the climatic 2001–2025 trends from the MAECHAM5 simulation including anthropogenic forcing, were found encouraging for performing the full 25-year experiment. They indicated that observational and sampling errors (both contributing about 0.2 K) are consistent with recent estimates of these errors from real RO data and that they should be sufficiently small for monitoring expected temperature trends in the global atmosphere over the next 10 to 20 years in most regions of the upper troposphere and lower stratosphere (UTLS). Inspection of the MAECHAM5 trends in different RO-accessible atmospheric parameters (microwave refractivity and pressure/geopotential height in addition to temperature) indicates complementary climate change sensitivity in different regions of the UTLS so that optimized climate monitoring shall combine information from all climatic key variables retrievable from GNSS RO data.
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO2) rate of PEG. C-14-Polyethylene glycol (C-14-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the (CO2)-C-14 evolved after degradation of the labelled PEG in the soils. After incubation, the amount of (CO2)-C-14 evolved from the C-14-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Radiotelemetry is an important tool used to aid the understanding and conservation of cryptic and rare birds. The two bird species of the family Picathartidae are little-known, secretive, forest-dwelling birds endemic to western and central Africa. In 2005, we conducted a radio-tracking trial of Grey-necked Picathartes Picathartes oreas in the Mbam Minkom Mountain Forest, southern Cameroon, using neck collar (two birds) and tail-mounted (four birds) transmitters to investigate the practicality of radio-tracking Picathartidae. Three birds with tail-mounted transmitters were successfully tracked with the fourth, though not relocated for radio tracking, resighted the following breeding season. Two of these were breeding birds that continued to provision young during radio tracking. One neck-collared bird was found dead three days after transmitter attachment and the other neither relocated nor resighted. As mortality in one bird was potentially caused by the neck collar transmitter we recommend tail-mounted transmitters in future radio-tracking studies of Picathartidae. Home ranges, shown using minimum convex polygon and kernel estimation methods, were generally small (<0.5 km(2)) and centred around breeding sites. A minimum of 60 fixes were found to be sufficient for home range estimation.
Resumo:
Intelligent buildings should provide a multi-sensory experience so that visual, aural, tactile, olfactory and gustatory senses are stimulated appropriately. A lack of environmental stimuli produces a boring and unsatisfying environment. It is now known that the environment affects people at deeper levels than, say, health and safety, and consequently it can modify moods and work performance. A holistic approach is proposed which recognizes that the physical environment together with social, organizational and personal factors can enhance the productivity of occupants. This approach provides a footprint for the design of healthier and more sustainable workplaces.
Resumo:
Temperature, relative humidity, and air quality all affect the sensory system via thermo receptors in the skin and the olfactory system. Air quality is mainly defined by the contaminants in the air. However, the most persistent memory of any space is often its odor. Strong, emotional, and past experiences are awakened by the olfactory sense. Odors can also influence cognitive processes that affect creative task performance, as well as personal memories and moods. Besides nitrogen and oxygen, the air contains particles and many chemicals that affect the efficiency of the oxygenation process in the blood, and ultimately the air breathed affects thinking and concentration. It is important to show clients the value of spending more capital on high-quality buildings that promote good ventilation. The process of achieving indoor-air quality is a continual one throughout the design, construction, commissioning, and facilities management processes. This paper reviews the evidence.
Effect of internal partitioning on indoor air quality of rooms with mixing ventilation - basic study
Resumo:
The internal partitioning, which is frequently introduced in open-space planning due to its flexibility, was tested to study its effects on the room air quality as well as ventilation performance. For the study, physical tests using a small model room and numerical modeling using CFD computation were utilized to evaluate different test conditions employing mixing ventilation from the ceiling. The partition parameters, such as its location, height, and the gap underneath, as well as contaminant source location were tested under isothermal conditions. This paper summarizes the results from the study.
Resumo:
Until recently, there has been little investigation concerning the poor indoor air quality (IAQ) in classrooms. Despite the evidence that the educational building systems in many of the UK institutions have significant defects that may degrade IAQ, systematic assessments of IAQ measurements has been rarely undertaken. When undertaking IAQ measurement, there is a difficult task of representing and characterizing the environment parameters. Although technologies exist to measure these parameters, direct measurements especially in a naturally ventilated spaces are often difficult. This paper presents a methodology for developing a method to characterize indoor environment flow parameters as well as the Carbon Dioxide (CO2) concentrations. Thus, CO2 concentration level can be influenced by the differences in the selection of sampling points and heights. However, because this research focuses on natural ventilation in classrooms, air exchange is provided mainly by air infiltration. It is hoped that the methodology developed and evaluated in this research can effectively simplify the process of estimating the parameters for a systematic assessment of IAQ measurements in a naturally ventilated classrooms.