9 resultados para Impaired Control
em CentAUR: Central Archive University of Reading - UK
Resumo:
A series of experiments was conducted to examine the mechanism by which removal of the thyroid glands in seasonally suppressed rams brings about rapid testicular growth. In the first experiment, thyroidectomy at the nadir of the testicular cycle (late winter) initiated testis growth without any detectable change in the extent of spermatogenesis compared with sham-operated controls. The serum concentration of FSH, but not LH, was also markedly increased by thyroidectomy. In the second experiment, serum FSH concentration was again increased by thyroidectomy in late winter but there was no effect of thyroidectomy on LH concentration, LH pulses (measured in frequent blood samples) or testosterone concentration. Furthermore, there was no evidence of a change in central dopaminergic inhibition of GnRH, as measured by the pulsatile LH response to an i.m. injection of the dopaminergic D-2 agonist bromocriptine or antagonist sulpiride. The rapid increase in FSH concentration occurred despite a markedly increased serum inhibin A concentration in thyroidectomized rams. Therefore, the efficacy of inhibin feedback was examined by testing the FSH-suppressive effect of an inhibin preparation (5 ml charcoal-stripped bovine follicular fluid i.v.) in long-term thyroidectomized and thyroid intact castrated rams. Bovine follicular fluid suppressed FSH concentrations in control rams as expected but in marked contrast, was completely without effect in thyroidectomized animals. In castrated rams, the FSH concentration was only marginally increased by thyroidectomy, indicating that there is a major component of the mediation of the effects of thyroidectomy that is testicular in origin. It was concluded that a reduction in the ability of endogenous inhibin to inhibit FSH release at the pituitary, rather than a hypothalamic mechanism, is the primary cause of the stimulation of testis growth by thyroidectomy.
Resumo:
“Point and click” interactions remain one of the key features of graphical user interfaces (GUIs). People with motion-impairments, however, can often have difficulty with accurate control of standard pointing devices. This paper discusses work that aims to reveal the nature of these difficulties through analyses that consider the cursor’s path of movement. A range of cursor measures was applied, and a number of them were found to be significant in capturing the differences between able-bodied users and motion-impaired users, as well as the differences between a haptic force feedback condition and a control condition. The cursor measures found in the literature, however, do not make up a comprehensive list, but provide a starting point for analysing cursor movements more completely. Six new cursor characteristics for motion-impaired users are introduced to capture aspects of cursor movement different from those already proposed.
Resumo:
People with motion-impairments can often have difficulty with accurate control of standard pointing devices for computer input. The nature of the difficulties may vary, so to be most effective, methods of assisting cursor control must be suited to each user's needs. The work presented here involves a study of cursor trajectories as a means of assessing the requirements of motion-impaired computer users. A new cursor characteristic is proposed that attempts to capture difficulties with moving the cursor in a smooth trajectory. A study was conducted to see if haptic tunnels could improve performance in "point and click" tasks. Results indicate that the tunnels reduced times to target for those users identified by the new characteristic as having the most difficulty moving in a smooth trajectory. This suggests that cursor characteristics have potential applications in performing assessments of a user's cursor control capabilities which can then be used to determine appropriate methods of assistance.
Resumo:
Wernicke’s aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke’s aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA.
Resumo:
Wernicke’s aphasia is a condition which results in severely disrupted language comprehension following a lesion to the left temporo-parietal region. A phonological analysis deficit has traditionally been held to be at the root of the comprehension impairment in WA, a view consistent with current functional neuroimaging which finds areas in the superior temporal cortex responsive to phonological stimuli. However behavioural evidence to support the link between a phonological analysis deficit and auditory comprehension has not been yet shown. This study extends seminal work by Blumstein et al. (1977) to investigate the relationship between acoustic-phonological perception, measured through phonological discrimination, and auditory comprehension in a case series of Wernicke’s aphasia participants. A novel adaptive phonological discrimination task was used to obtain reliable thresholds of the phonological perceptual distance required between nonwords before they could be discriminated. Wernicke’s aphasia participants showed significantly elevated thresholds compared to age and hearing matched control participants. Acoustic-phonological thresholds correlated strongly with auditory comprehension abilities in Wernicke’s aphasia. In contrast, nonverbal semantic skills showed no relationship with auditory comprehension. The results are evaluated in the context of recent neurobiological models of language and suggest that impaired acoustic-phonological perception underlies the comprehension impairment in Wernicke’s aphasia and favour models of language which propose a leftward asymmetry in phonological analysis.
Resumo:
The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.
Resumo:
Nonlocal investors purchase and sell investment property in a distant metropolitan area. In this study, we identify capital value underperformance for nonlocal investors on both sides of the transaction, when they purchase and when they sell. The commercial real estate transactions data include a national sample of office property occurring in more than 100 U.S. markets. Using propensity-score matched sample to control for selection bias, we find that nonlocal investors overpay on the purchase by an estimated 13.8 % and sell at an estimated 7 % discount. These disadvantages relative to local investors expand with the geographic distance separating investor and asset. Nonlocal investors fundamentally overvalue similar assets sold to each other relative to assets transacted between locals, and are less patient as sellers. The positive bias in overpayment is directly tied to office rent differentials between the asset and investor markets.
Resumo:
How is semantic memory influenced by individual differences under conditions of distraction? This question was addressed by observing how visual target words—drawn from a single category—were recalled whilst ignoring spoken distracter words that were either members of the same, or members of a different (single) category. Working memory capacity (WMC) was related to disruption only with synchronous, not asynchronous, presentation and distraction was greater when the words were presented synchronously. Subsequent experiments found greater negative priming of distracters amongst individuals with higher WMC but this may be dependent on targets and distracters being comparable category exemplars. With less dominant category members as distracters, target recall was impaired – relative to control – only amongst individuals with low WMC. The results highlight the role of cognitive control resources in target-distracter selection and the individual-specific cost implications of such cognitive control.
Resumo:
Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD.