53 resultados para Future value prediction

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of near infrared spectroscopy in conjunction with partial least squares regression to predict Miscanthus xgiganteus and short rotation coppice willow quality indices was examined. Moisture, calorific value, ash and carbon content were predicted with a root mean square error of cross validation of 0.90% (R2 = 0.99), 0.13 MJ/kg (R2 = 0.99), 0.42% (R2 = 0.58), and 0.57% (R2 = 0.88), respectively. The moisture and calorific value prediction models had excellent accuracy while the carbon and ash models were fair and poor, respectively. The results indicate that near infrared spectroscopy has the potential to predict quality indices of dedicated energy crops, however the models must be further validated on a wider range of samples prior to implementation. The utilization of such models would assist in the optimal use of the feedstock based on its biomass properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Samples of whole crop wheat (WCW, n = 134) and whole crop barley (WCB, n = 16) were collected from commercial farms in the UK over a 2-year period (2003/2004 and 2004/2005). Near infrared reflectance spectroscopy (NIRS) was compared with laboratory and in vitro digestibility measures to predict digestible organic matter in the dry matter (DOMD) and metabolisable energy (ME) contents measured in vivo using sheep. Spectral models using the mean spectra of two scans were compared with those using individual spectra (duplicate spectra). Overall NIRS accurately predicted the concentration of chemical components in whole crop cereals apart from crude protein. ammonia-nitrogen, water-soluble carbohydrates, fermentation acids and solubility values. In addition. the spectral models had higher prediction power for in vivo DOMD and ME than chemical components or in vitro digestion methods. Overall there Was a benefit from the use of duplicate spectra rather than mean spectra and this was especially so for predicting in vivo DOMD and ME where the sample population size was smaller. The spectral models derived deal equally well with WCW and WCB and Would he of considerable practical value allowing rapid determination of nutritive value of these forages before their use in diets of productive animals. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The retention of peatland carbon (C) and the ability to continue to draw down and store C from the atmosphere is not only important for the UK terrestrial carbon inventory, but also for a range of ecosystem services, the landscape value and the ecology and hydrology of ~15% of the land area of the UK. Here we review the current state of knowledge on the C balance of UK peatlands using several studies which highlight not only the importance of making good flux measurements, but also the spatial and temporal variability of different flux terms that characterise a landscape affected by a range of natural and anthropogenic processes and threats. Our data emphasise the importance of measuring (or accurately estimating) all components of the peatland C budget. We highlight the role of the aquatic pathway and suggest that fluxes are higher than previously thought. We also compare the contemporary C balance of several UK peatlands with historical rates of C accumulation measured using peat cores, thus providing a long-term context for present-day measurements and their natural year-on-year variability. Contemporary measurements from 2 sites suggest that current accumulation rates (–56 to –72 g C m–2 yr–1) are at the lower end of those seen over the last 150 yr in peat cores (–35 to –209 g C m–2 yr–1). Finally, we highlight significant current gaps in knowledge and identify where levels of uncertainty are high, as well as emphasise the research challenges that need to be addressed if we are to improve the measurement and prediction of change in the peatland C balance over future decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faced by the realities of a changing climate, decision makers in a wide variety of organisations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organisations that fund climate research, is what is the potential for climate science to deliver improvements - especially reductions in uncertainty - in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty and scenario uncertainty. Using data from a suite of climate models we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. Our findings have implications for managing adaptation to a changing climate. Because the costs of adaptation are very large, and greater uncertainty about future climate is likely to be associated with more expensive adaptation, reducing uncertainty in climate predictions is potentially of enormous economic value. We highlight the need for much more work to compare: a) the cost of various degrees of adaptation, given current levels of uncertainty; and b) the cost of new investments in climate science to reduce current levels of uncertainty. Our study also highlights the importance of targeting climate science investments on the most promising opportunities to reduce prediction uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing concern about soil enrichment with K+ and subsequent potential losses following long-term application of poor quality water to agricultural land. Different models are increasingly being used for predicting or analyzing water flow and chemical transport in soils and groundwater. The convective-dispersive equation (CDE) and the convective log-normal transfer function (CLT) models were fitted to the potassium (K+) leaching data. The CDE and CLT models produced equivalent goodness of fit. Simulated breakthrough curves for a range of CaCl2 concentration based on parameters of 15 mmol l(-1) CaCl2 were characterised by an early peak position associated with higher K+ concentration as the CaCl2 concentration used in leaching experiments decreased. In another method, the parameters estimated from 15 mmol l(-1) CaCl2 solution were used for all other CaCl2 concentrations, and the best value of retardation factor (R) was optimised for each data set. A better prediction was found. With decreasing CaCl2 concentration the value of R is required to be more than that measured (except for 10 mmol l(-1) CaCl2), if the estimated parameters of 15 mmol l(-1) CaCl2 are used. The two models suffer from the fact that they need to be calibrated against a data set, and some of their parameters are not measurable and cannot be determined independently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting atmospheric blocking is one of the main problems facing medium-range weather forecasters in the extratropics. The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) provides an excellent basis for medium-range forecasting as it provides a number of different possible realizations of the meteorological future. This ensemble of forecasts attempts to account for uncertainties in both the initial conditions and the model formulation. Since 18 July 2000, routine output from the EPS has included the field of potential temperature on the potential vorticity (PV) D 2 PV units (PVU) surface, the dynamical tropopause. This has enabled the objective identification of blocking using an index based on the reversal of the meridional potential-temperature gradient. A year of EPS probability forecasts of Euro-Atlantic and Pacific blocking have been produced and are assessed in this paper, concentrating on the Euro-Atlantic sector. Standard verification techniques such as Brier scores, Relative Operating Characteristic (ROC) curves and reliability diagrams are used. It is shown that Euro-Atlantic sector-blocking forecasts are skilful relative to climatology out to 10 days, and are more skilful than the deterministic control forecast at all lead times. The EPS is also more skilful than a probabilistic version of this deterministic forecast, though the difference is smaller. In addition, it is shown that the onset of a sector-blocking episode is less well predicted than its decay. As the lead time increases, the probability forecasts tend towards a model climatology with slightly less blocking than is seen in the real atmosphere. This small under-forecasting bias in the blocking forecasts is possibly related to a westerly bias in the ECMWF model. Copyright © 2003 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensemble predictions are being used more frequently to model the propagation of uncertainty through complex, coupled meteorological, hydrological and coastal models, with the goal of better characterising flood risk. In this paper, we consider the issues that we judge to be important when designing and evaluating ensemble predictions, and make recommendations for the guidance of future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate science is coming under increasing pressure to deliver projections of future climate change at spatial scales as small as a few kilometres for use in impacts studies. But is our understanding and modelling of the climate system advanced enough to offer such predictions? Here we focus on the Atlantic–European sector, and on the effects of greenhouse gas forcing on the atmospheric and, to a lesser extent, oceanic circulations. We review the dynamical processes which shape European climate and then consider how each of these leads to uncertainty in the future climate. European climate is unique in many regards, and as such it poses a unique challenge for climate prediction. Future European climate must be considered particularly uncertain because (i) the spread between the predictions of current climate models is still considerable and (ii) Europe is particularly strongly affected by several processes which are known to be poorly represented in current models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution. The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data. Empirical models lack the biological basis necessary to evaluate mitigation strategies to reduce excretion of waste, including nitrogen, phosphorus and methane. Such models may have little predictive value when comparing various feeding strategies. Examples include the Intergovernmental Panel on Climate Change (IPCC) Tier II models to quantify methane emissions and current protein evaluation systems to evaluate low protein diets to reduce nitrogen losses to the environment. Nutrient based mechanistic models can address such issues. Since environmental issues generally attract more funding from governmental offices, further development of nutrient based models may well take place within an environmental framework.