10 resultados para Ethanol dehydration

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a soil dries, the earthworms in that soil dehydrate and become less active. Moisture stress may weaken an earthworm, lowering the radial pressure that the animal can produce. This possibility was investigated for the earthworm Aporrectodea caliginosa (Savigny). Pressures were compared for saturated earthworms (worms taken from saturated soil) and stressed earthworms (worms that had been partially dehydrated by leaving them in dry soil). A load cell was used to record the forces that earthworms produced as they moved through artificial burrows (holes that had been drilled through blocks of aluminium or Perspex). The radial pressure was calculated using the forces exerted and the dimensions of the artificial burrows. There was a negative correlation between burrow diameter and radial pressure, although radial pressure was independent of the length of the block through which the earthworms had burrowed. The highest radial pressures were produced by the anterior segments of the animal. Partial dehydration caused the earthworms to become quiescent, but did not decrease the radial pressure that the earthworms produced. It is suggested that coelomic fluid is retained in the anterior segments while the rest of the animal dehydrates. Dehydrated earthworms became lethargic, and we suggest that lethargy is due to the loss of coelomic fluid from the posterior segments. Coelomic fluid is known to be lost through dorsal pores. In burrowing species of earthworm such as Aporrectodea caliginosa, these pores are only present on the posterior segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In certain applications copolymer P123 (E21P67E21) is dissolved in water-ethanol mixtures, initially to form micellar solutions and eventually to gel. For P123 in 10, 20, and 30 wt % aqueous ethanol we used dynamic light scattering from dilute solutions to confirm micellization, oscillatory rheometry, and visual observation of mobility (tube inversion) to determine gel formation in concentrated solutions and small-angle X-ray scattering (SAXS) to determine gel structure. Except for solutions in 30 wt % aqueous ethanol, a clear-turbid transition was encountered on heating dilute and concentrated micellar solutions alike, and as for solutions in water alone (Chaibundit et al. Langmuir 2007, 23, 9229) this could be ascribed to formation of wormlike micelles. Dense clouding, typical of phase separation, was observed at higher temperatures. Regions of isotropic and birefringent gel were defined for concentrated solutions and shown (by SAXS) to have Cubic (fcc and hcp) and hexagonal structures, consistent with packed spherical and elongated micelles, respectively. The cubic gels (0, 10, and 20 wt % ethanol) were clear, while the hex gels were either turbid (0 and 10 wt % ethanol), turbid enclosing a clear region (20 wt % ethanol), or entirely clear (30 wt % ethanol). The SAXS profile was unchanged between turbid and clear regions of the 20 wt % ethanol gel. Temperature scans of dynamic moduli showed (as expected) a clear distinction between high-modulus cubic gels (G'(max) approximate to 20-30 kPa) and lower modulus hex gels (G'(max) < 10 kPa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a solution technique, NaY zeolite incorporated, tetraethylorthosilicate-crosslinked poly(vinyl alcohol) membranes were prepared. The resulting membranes were tested for their ability to separate isopropyl alcohol/water mixtures by pervaporation in the temperature range of 30-50 degrees C. The effects of the zeolite content and feed composition on the pervaporation performance of the membranes were investigated. The experimental results demonstrated that both flux and selectivity increased simultaneously with increasing zeolite content in the membranes. This was explained on the basis of the enhancement of hydrophilicity, selective adsorption, and establishment of a molecular sieving action attributed to the creation of pores in the membrane matrix. The membrane containing 15 mass % zeolite exhibited the highest separation selectivity of 3991 with a flux of 5.39 X 10(-2) kg/m(2) h with 10 mass % water in the feed at 30 degrees C. The total flux and flux of water were close to each other for almost all the studied membranes, and this suggested that the membranes could be used effectively to break the azeotropic point of water/isopropyl alcohol mixtures to remove a small amount of water from isopropyl alcohol. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water were significantly lower than those for isopropyl alcohol, and this suggested that the developed membranes had a higher separation efficiency for water/isopropyl alcohol systems. The activation energy values for total permeation and water permeation were found to be almost the same for all the membranes, and this signified that coupled transport was minimal because of the highly selective nature of the membranes. Positive heat of sorption values were observed in all the membranes, and this suggested that Henry's mode of sorption was predominant. (c) 2008 Wiley Periodicals, lnc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass is an important source of energy in Thailand and is currently the main renewable energy source, accounting for 40% of the renewable energy used. The Department of Alternative Energy and E�ciency (DEDE), Ministry of Thailand, has been promoting the use of renewable energy in Thailand for the past decade. The new target for renewable energy usage in the country is set at 25% of the �nal energy demand in 2021. Thailand is the world’s fourth largest producer of cassava and this results in the production of signi�cant amounts of cassava rhizome which is a waste product. Cassava rhizome has the potential to be co-�red with coal for the production of heat and power. With suitable co-�ring ratios, little modi�cation will be required in the co-�ring technology. This review article is concerned with an investigation of the feasibility of co-�ring cassava rhizome in a combined heat and power system for a cassava based bio-ethanol plant in Thailand. Enhanced use of cassava rhizome for heat and power production could potentially contribute to a reduction of greenhouse gas emissions and costs, and would help the country to meet the 2021 renewable energy target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydration-dependent DNA deformation has been known since Rosalind Franklin recognised that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fibre diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyridophenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven datasets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid cubic phase samples dry out and undergo phase transitions when exposed to air. We demonstrate experimentally and theoretically that adding glycerol controllably lowers the humidity at which cubic phases form. These results broaden the potential applications of cubic phases and open up the potential of a new humidityresponsive nanomaterial.