21 resultados para Early life stress
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: In mammals, early-life environmental variations appear to affect microbial colonization and therefore competent immune development, and exposure to farm environments in infants has been inversely correlated with allergy development. Modelling these effects using manipulation of neonatal rodents is difficult due to their dependency on the mother, but the relatively independent piglet is increasingly identified as a valuable translational model for humans. This study was designed to correlate immune regulation in piglets with early-life environment. Methods: Piglets were nursed by their mother on a commercial farm, while isolatorreared siblings were formula fed. Fluorescence immunohistology was used to quantify T-reg and effector T-cell populations in the intestinal lamina propria and the systemic response to food proteins was quantified by capture ELISA. Results: There was more CD4+ and CD4+CD25+ effector T-cell staining in the intestinal mucosa of the isolator-reared piglets compared with their farm-reared counterparts. In contrast, these isolator-reared piglets had a significantly reduced CD4+CD25+Foxp3+ regulatory T-cell population compared to farm-reared littermates, resulting in a significantly higher T-reg-to-effector ratio in the farm animals. Consistent with these findings, isolator-reared piglets had an increased serum IgG anti-soya response to novel dietary soya protein relative to farm-reared piglets. Conclusion: Here, we provide the first direct evidence, derived from intervention, that components of the early-life environment present on farms profoundly affects both local development of regulatory components of the mucosal immune system and immune responses to food proteins at weaning. We propose that neonatal piglets provide a tractable model which allows maternal and treatment effects to be statistically separated.
Resumo:
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.
Resumo:
Environmental conditions during the early life stages of birds can have significant effects on the quality of sexual signals in adulthood, especially song, and these ultimately have consequences for breeding success and fitness. This has wide-ranging implications for the rehabilitation protocols undertaken in wildlife hospitals which aim to return captive-reared animals to their natural habitat. Here we review the current literature on bird song development and learning in order to determine the potential impact that the rearing of juvenile songbirds in captivity can have on rehabilitation success. We quantify the effects of reduced learning on song structure and relate this to the possible effects on an individual's ability to defend a territory or attract a mate. We show the importance of providing a conspecific auditory model for birds to learn from in the early stages post-fledging, either via live- or tape-tutoring and provide suggestions for tutoring regimes. We also highlight the historical focus on learning in a few model species that has left an information gap in our knowledge for most species reared at wildlife hospitals.
Resumo:
Recent work suggests that the environment experienced in early life can alter life histories in wild populations [1, 2, 3, 4 and 5], but our understanding of the processes involved remains limited [6 and 7]. Since anthropogenic environmental change is currently having a major impact on wild populations [8], this raises the possibility that life histories may be influenced by human activities that alter environmental conditions in early life. Whether this is the case and the processes involved remain unexplored in wild populations. Using 23 years of longitudinal data on the Mauritius kestrel (Falco punctatus), a tropical forest specialist, we found that females born in territories affected by anthropogenic habitat change shifted investment in reproduction to earlier in life at the expense of late life performance. They also had lower survival rates as young adults. This shift in life history strategy appears to be adaptive, because fitness was comparable to that of other females experiencing less anthropogenic modification in their natal environment. Our results suggest that human activities can leave a legacy on wild birds through natal environmental effects. Whether these legacies have a detrimental effect on populations will depend on life history responses and the extent to which these reduce individual fitness.
Resumo:
Habitat modification for agriculture is one of the greatest current threats to global biodiversity. Studies show large-scale population declines and short-term demographic impacts, but knowledge of the long-term effects of agriculture on individuals remains poor. This thesis examines the short- and long-term impact of agriculture on a reintroduced population of the Mauritius kestrel Falco punctatus, a tropical forest-dwelling raptor endemic to the island of Mauritius, that also utilises agricultural habitats. This population is a particularly appropriate model system, because complete life history data exists for individuals over a 22-year period, alongside detailed habitat and climate data. Agriculture has a short-term detrimental effect on Mauritius kestrel breeding success by exacerbating the seasonal decline in fledgling production. This is partly driven by the habitat-specific composition of the prey community that kestrels exploit to feed their chicks. The fledglings from agricultural territories tend to recruit in agricultural territories. This is largely due to poor natal dispersal and fine-scale spatial autocorrelation in the habitat matrix. Breeders do not respond to agriculture in the breeding territory by dispersing, unless the pair bond is broken. Therefore, individuals originating in agricultural territories tend to recruit, and remain in, agricultural territories throughout their lives. In addition to this, females from agricultural natal territories have shorter lifespans, schedule their peak reproductive output earlier in life, and exhibit more rapid senescence than non-agricultural females. The combination of this long-term effect and the adult experience of agriculture imposed by life history and environmental constraints, leads to a lower mean lifetime reproductive rate compared to females originating in non-agricultural habitats. These results demonstrate that agriculture experienced in early life has a lifelong effect on individuals. The effects can persist in time and space, with potentially delayed effects on population dynamics. These findings are important for understanding species’ responses to agricultural expansion.
Resumo:
Background The low expression polymorphism of the MAOA gene in interaction with adverse environments (G × E) is associated with antisocial behaviour disorders. These have their origins in early life, but it is not known whether MAOA G × E occurs in infants. We therefore examined whether MAOA G × E predicts infant anger proneness, a temperamental dimension associated with later antisocial behaviour disorders. In contrast to previous studies, we examined MAOA G × E prospectively using an observational measure of a key aspect of the infant environment, maternal sensitivity, at a specified developmental time point. Methods In a stratified epidemiological cohort recruited during pregnancy, we ascertained MAOA status (low vs. high expression alleles) from the saliva of 193 infants, and examined specific predictions to maternal report of infant temperament at 14 months from maternal sensitivity assessed at 29 weeks of age. Results Analyses, weighted to provide general population estimates, indicated a robust interaction between MAOA status and maternal sensitivity in the prediction of infant anger proneness (p = .003) which became stronger once possible confounders for maternal sensitivity were included in the model (p = .0001). The interaction terms were similar in males (p = .010) and females (p = .016), but the effects were different as a consequence of an additional sex of infant by maternal sensitivity interaction. Conclusions This prospective study provides the first evidence of moderation by the MAOA gene of effects of parenting on infant anger proneness, an important early risk for the development of disruptive and aggressive behaviour disorders.
Resumo:
The complex metabolic relationships between the host and its microbiota change throughout life and vary extensively between individuals, affecting disease risk factors and therapeutic responses through drug metabolism. Elucidating the biochemical mechanisms underlying this human supraorganism symbiosis is yielding new therapeutic insights to improve human health, treat disease, and potentially modify human disease risk factors. Therapeutic options include targeting drugs to microbial genes or co-regulated host pathways and modifying the gut microbiota through diet, probiotic and prebiotic interventions, bariatric surgery, fecal transplants, or ecological engineering. The age-associated co-development of the host and its microbiota provides a series of windows for therapeutic intervention from early life through old age
Resumo:
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long-term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short- and long-term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.
Resumo:
Background: Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. Methodology/Principal Findings: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. Conclusions/Significance: The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
Piglets can be reared under a variety of conditions ranging from outdoor, organic farms to high intensity, indoor facilities which use prophylactic antibiotics and everything in between. Do these different early-life influences matter when it comes to longer-term health and productivity?
Resumo:
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farmpiglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue’ for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.
Resumo:
The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.
Resumo:
The low activity variant of the monoamine oxidase A (MAOA) functional promoter polymorphism, MAOA-LPR, in interaction with adverse environments (G × E) is associated with child and adult antisocial behaviour disorders. MAOA is expressed during foetal development so in utero G × E may influence early neurodevelopment. We tested the hypothesis that MAOA G × E during pregnancy predicts infant negative emotionality soon after birth. In an epidemiological longitudinal study starting in pregnancy, using a two stage stratified design, we ascertained MAOA-LPR status (low vs. high activity variants) from the saliva of 209 infants (104 boys and 105 girls), and examined predictions to observed infant negative emotionality at 5 weeks post-partum from life events during pregnancy. In analyses weighted to provide estimates for the general population, and including possible confounders for life events, there was an MAOA status by life events interaction (P = 0.017). There was also an interaction between MAOA status and neighbourhood deprivation (P = 0.028). Both interactions arose from a greater effect of increasing life events on negative emotionality in the MAOA-LPR low activity, compared with MAOA-LPR high activity infants. The study provides the first evidence of moderation by MAOA-LPR of the effect of the social environment in pregnancy on negative emotionality in infancy, an early risk for the development of child and adult antisocial behaviour disorders.