5 resultados para DNA BASES

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in silico screen of 41 of the 81 coding regions of the Nicotiana plastid genome generated a shortlist of 12 candidates as DNA barcoding loci for land plants. These loci were evaluated for amplification and sequence variation against a reference set of 98 land plant taxa. The deployment of multiple primers and a modified multiplexed tandem polymerase chain reaction yielded 85–94% amplification across taxa, and mean sequence differences between sister taxa of 6.1 from 156 bases of accD to 22 from 493 bases of matK. We conclude that loci should be combined for effective diagnosis, and recommend further investigation of the following six loci: matK, rpoB, rpoC1, ndhJ, ycf5 and accD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-29-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5- HmdC, 5-formyl-29-deoxycytidine (5-FodC), 5-carboxyl-29-deoxycytidine (5-CadC), 5-hydroxymethyl-29-deoxyuridine (5- HmdU), and the (59S) diastereomer of 8,59-cyclo-29-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 106 nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tetfamily dioxygenase enzymes in Arabidopsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydration-dependent DNA deformation has been known since Rosalind Franklin recognised that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fibre diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyridophenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven datasets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.