11 resultados para Cornelia Bororquia
em CentAUR: Central Archive University of Reading - UK
Resumo:
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.
Resumo:
Interpenetrating polymeric networks based on sodium alginate and poly(N-isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′-methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X-ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature-responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X-ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo-SEM showed the highly heterogeneous nature of the gels.
Resumo:
Hydrogels consisting of sodium alginate and N-isopropylacrylamide covalently crosslinked with N,N′-methylenebisacrylamide were prepared. The mixed-interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo- and pH-responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition.
Resumo:
Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of 14 studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight newly discovered signals yielding association with P < 5 × 10(-6) in nine independent data sets (2,818 cases and 4,083 controls), we observed two loci that yielded genome-wide significant combined P values near OLFM4 at 13q14 (rs9568856; P = 1.82 × 10(-9); odds ratio (OR) = 1.22) and within HOXB5 at 17q21 (rs9299; P = 3.54 × 10(-9); OR = 1.14). Both loci continued to show association when two extreme childhood obesity cohorts were included (2,214 cases and 2,674 controls). These two loci also yielded directionally consistent associations in a previous meta-analysis of adult BMI(1).
Resumo:
The INSIG2 rs7566605 polymorphism was identified for obesity (BMI> or =30 kg/m(2)) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status ('healthy population', HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I(2) measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I(2) measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI> or =32.5, 35.0, 37.5, 40.0 kg/m(2) versus BMI<25 kg/m(2)) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far.
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
Resumo:
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow-up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods.
Resumo:
In an adaptive seamless phase II/III clinical trial interim analysis, data are used for treatment selection, enabling resources to be focused on comparison of more effective treatment(s) with a control. In this paper, we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focuses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short- and long-term endpoints.
Resumo:
Seamless phase II/III clinical trials in which an experimental treatment is selected at an interim analysis have been the focus of much recent research interest. Many of the methods proposed are based on the group sequential approach. This paper considers designs of this type in which the treatment selection can be based on short-term endpoint information for more patients than have primary endpoint data available. We show that in such a case, the familywise type I error rate may be inflated if previously proposed group sequential methods are used and the treatment selection rule is not specified in advance. A method is proposed to avoid this inflation by considering the treatment selection that maximises the conditional error given the data available at the interim analysis. A simulation study is reported that illustrates the type I error rate inflation and compares the power of the new approach with two other methods: a combination testing approach and a group sequential method that does not use the short-term endpoint data, both of which also strongly control the type I error rate. The new method is also illustrated through application to a study in Alzheimer's disease. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Resumo:
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.