40 resultados para Computational modelling by homology
em CentAUR: Central Archive University of Reading - UK
Resumo:
Novel 'tweezer-type' complexes that exploit the interactions between pi-electron-rich pyrenyl groups and pi-electron deficient diimide units have been designed and synthesised. The component molecules leading to complex formation were accessed readily from commercially available starting materials through short and efficient syntheses. Analysis of the resulting complexes, using the visible charge-transfer band, revealed association constants that increased sequentially from 130 to 11,000 M-1 as increasing numbers of pi-pi-stacking interactions were introduced into the systems. Computational modelling was used to analyse the structures of these complexes, revealing low-energy chain-folded conformations for both components, which readily allow close, multiple pi-pi-stacking and hydrogen bonding to be achieved. In this paper, we give details of our initial studies of these complexes and outline how their behaviour could provide a basis for designing self-healing polymer blends for use in adaptive coating systems. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Copolycondensation of N,N’-bis(4-hydroxybutyl)-biphenyl-3,4,3',4'-tetracarboxylic diimide at 20 and 25 mol% with bis(4-hydroxybutyl)-2,6-naphthalate produces PBN-based copoly(ester-imide)s that not only crystallise but also form a (smectic) mesophase upon cooling from the melt. Incorporation of 25 mol% imide in PBN causes the glass transition temperature (measured by DSC) to rise from 51 to 74 °C, a significant increase relative to PBN. Furthermore, increased storage- (G'), loss- (G'') and elastic (E) moduli are observed for both copoly(ester-imide)s when compared to PBN itself. Structural analysis of the 20 mol% copolymer by X-ray powder and fibre diffraction, interfaced to computational modelling, suggests a crystal structure related to that of α-PBN, in space group P-1, with cell dimensions a = 4.74, b = 6.38, c = 14.45 Å, α = 106.1, β = 122.1, γ = 97.3°, ρ = 1.37 g cm-3.
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Resumo:
We present a new approach that allows the determination and refinement of force field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on tight coupling between experimentally derived structure factors and computer modelling. By separating the potential into terms representing respectively bond stretching, angle bending and torsional rotation and by treating each of them separately, the various potential parameters are extracted directly from experiment. The procedure is illustrated on molten polytetrafluoroethylene.
Resumo:
The Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the algorithm involve the radar refl ectivity - rainfall rates relationship, surface clutter detection over high terrain, a new reference database for the passive microwave algorithm, and a higher quality gauge analysis product for monthly bias correction. To assess the impacts of the improved algorithm, we compare the version 7 and the older version 6 product with data from 263 rain gauges in and around the northern Peruvian Andes. The region covers humid tropical rainforest, tropical mountains, and arid to humid coastal plains. We and that the version 7 product has a significantly lower bias and an improved representation of the rainfall distribution. We further evaluated the performance of versions 6 and 7 products as forcing data for hydrological modelling, by comparing the simulated and observed daily streamfl ow in 9 nested Amazon river basins. We find that the improvement in the precipitation estimation algorithm translates to an increase in the model Nash-Sutcliffe effciency, and a reduction in the percent bias between the observed and simulated flows by 30 to 95%.
Resumo:
This paper addresses the issue of activity understanding from video and its semantics-rich description. A novel approach is presented where activities are characterised and analysed at different resolutions. Semantic information is delivered according to the resolution at which the activity is observed. Furthermore, the multiresolution activity characterisation is exploited to detect abnormal activity. To achieve these system capabilities, the focus is given on context modelling by employing a soft computing-based algorithm which automatically enables the determination of the main activity zones of the observed scene by taking as input the trajectories of detected mobiles. Such areas are learnt at different resolutions (or granularities). In a second stage, learned zones are employed to extract people activities by relating mobile trajectories to the learned zones. In this way, the activity of a person can be summarised as the series of zones that the person has visited. Employing the inherent soft relation properties, the reported activities can be labelled with meaningful semantics. Depending on the granularity at which activity zones and mobile trajectories are considered, the semantic meaning of the activity shifts from broad interpretation to detailed description.Activity information at different resolutions is also employed to perform abnormal activity detection.
Resumo:
Children’s eye movements during reading. In this chapter, we evaluate the literature on children’s eye movements during reading to date. We describe the basic, developmental changes that occur in eye movement behaviour during reading, discuss age-related changes in the extent and time course of information extraction during fixations in reading, and compare the effects of visual and linguistic manipulations in the text on children’s eye movement behaviour in relation to skilled adult readers. We argue that future research will benefit from examining how eye movement behaviour during reading develops in relation to language and literacy skills, and use of computational modelling with children’s eye movement data may improve our understanding of the mechanisms that underlie the progression from beginning to skilled reader.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.
Resumo:
Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Systems Engineering often involves computer modelling the behaviour of proposed systems and their components. Where a component is human, fallibility must be modelled by a stochastic agent. The identification of a model of decision-making over quantifiable options is investigated using the game-domain of Chess. Bayesian methods are used to infer the distribution of players’ skill levels from the moves they play rather than from their competitive results. The approach is used on large sets of games by players across a broad FIDE Elo range, and is in principle applicable to any scenario where high-value decisions are being made under pressure.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon-known as heterotachy-can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.