49 resultados para Clustering over U-Matrix
em CentAUR: Central Archive University of Reading - UK
Resumo:
A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.
Resumo:
An objective identification and ranking of extraordinary rainfall events for Northwest Italy is established using time series of annual precipitation maxima for 1938–2002 at over 200 stations. Rainfall annual maxima are considered for five reference durations (1, 3, 6, 12, and 24 h). In a first step, a day is classified as an extraordinary rainfall day when a regional threshold calculated on the basis of a two-components extreme value distribution is exceeded for at least one of the stations. Second, a clustering procedure taking into account the different rainfall durations is applied to the identified 163 events. Third, a division into six clusters is chosen using Ward's distance criteria. It is found that two of these clusters include the seven strongest events as quantified from a newly developed measure of intensity which combines rainfall intensities and spatial extension. Two other clusters include the weakest 72% historical events. The obtained clusters are analyzed in terms of typical synoptic characteristics. The two top clusters are characterized by strong and persistent upper air troughs inducing not only moisture advection from the North Atlantic into the Western Mediterranean but also strong northward flow towards the southern Alpine ranges. Humidity transports from the North Atlantic are less important for the weaker clusters. We conclude that moisture advection from the North Atlantic plays a relevant role in the magnitude of the extraordinary events over Northwest Italy.
Resumo:
Under particular large-scale atmospheric conditions, several windstorms may affect Europe within a short time period. The occurrence of such cyclone families leads to large socioeconomic impacts and cumulative losses. The serial clustering of windstorms is analyzed for the North Atlantic/western Europe. Clustering is quantified as the dispersion (ratio variance/mean) of cyclone passages over a certain area. Dispersion statistics are derived for three reanalysis data sets and a 20-run European Centre Hamburg Version 5 /Max Planck Institute Version–Ocean Model Version 1 global climate model (ECHAM5/MPI-OM1 GCM) ensemble. The dependence of the seriality on cyclone intensity is analyzed. Confirming previous studies, serial clustering is identified in reanalysis data sets primarily on both flanks and downstream regions of the North Atlantic storm track. This pattern is a robust feature in the reanalysis data sets. For the whole area, extreme cyclones cluster more than nonextreme cyclones. The ECHAM5/MPI-OM1 GCM is generally able to reproduce the spatial patterns of clustering under recent climate conditions, but some biases are identified. Under future climate conditions (A1B scenario), the GCM ensemble indicates that serial clustering may decrease over the North Atlantic storm track area and parts of western Europe. This decrease is associated with an extension of the polar jet toward Europe, which implies a tendency to a more regular occurrence of cyclones over parts of the North Atlantic Basin poleward of 50°N and western Europe. An increase of clustering of cyclones is projected south of Newfoundland. The detected shifts imply a change in the risk of occurrence of cumulative events over Europe under future climate conditions.
Resumo:
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications.
Resumo:
A survey is presented of hourly averages of observations of the interplanetary medium, made by satellites close to the Earth (i.e. at l a.u.) in the years 1963-1986. This survey therefore covers two complete solar cycles (numbers 20 and 21). The distributions and solar-cycle variations of IMF field strength, B, and its northward component (in GSM coordinates), B(z), and of the solar-wind density, n, speed, v, and dynamic pressure, P, are discussed. Because of their importance to the terrestrial magnetosphere/ionosphere, particular attention is given to B(z) and P. The solar-cycle variation in the magnitude and variability of B(z) previously reported for cycle 20, is also found for cycle 21. However, the solar-wind data show a number of differences between cycles 20 and 21. The average dynamic pressure is found to show a solar-cycle variation and a systematic increase over the period of the survey. The minimum of dynamic pressure at sunspot maximum is mainly due to reduced solar-wind densities in cycle 20, but lower solar-wind speed in cycle 21 is a more significant factor. The distribution of the duration of periods of stable polarity of the IMF B(z) component shows that the magnetosphere could achieve steady state for only a small fraction of the time and there is some evidence for a solar-cycle variation in this fraction. It is also found that the polarity changes in the IMF B(z) fall into two classes: one with an associated change in solar-wind dynamic pressure, the other without such a change. However, in only 20% of cases does the dynamic pressure change exceed 50%.
Resumo:
Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.
Resumo:
The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one parent cyclone of one or more offspring through secondary cyclogenesis. A long cyclone-track database was constructed for extended October March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP NCAR reanalysis. A dispersion statistic based on the varianceto- mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic western Russian pattern, and the polar Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.
Resumo:
We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.
Resumo:
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
Resumo:
To gain a new perspective on the interaction of the Atlantic Ocean and the atmosphere, the relationship between the atmospheric and oceanic meridional energy transports is studied in a version of HadCM3, the U.K. Hadley Centre's coupled climate model. The correlation structure of the energy transports in the atmosphere and Atlantic Ocean as a function of latitude, and the cross correlation between the two systems are analyzed. The processes that give rise to the correlations are then elucidated using regression analyses. In northern midlatitudes, the interannual variability of the Atlantic Ocean energy transport is dominated by Ekman processes. Anticorrelated zonal winds in the subtropics and midlatitudes, particularly associated with the North Atlantic Oscillation (NAO), drive anticorrelated meridional Ekman transports. Variability in the atmospheric energy transport is associated with changes in the stationary waves, but is only weakly related to the NAO. Nevertheless, atmospheric driving of the oceanic Ekman transports is responsible for a bipolar pattern in the correlation between the atmosphere and Atlantic Ocean energy transports. In the Tropics, the interannual variability of the Atlantic Ocean energy transport is dominated by an adjustment of the tropical ocean to coastal upwelling induced along the Venezuelan coast by a strengthening of the easterly trade winds. Variability in the atmospheric energy transport is associated with a cross-equatorial meridional overturning circulation that is only weakly associated with variability in the trade winds along the Venezuelan coast. In consequence, there is only very limited correlation between the atmosphere and Atlantic Ocean energy transports in the Tropics of HadCM3
Resumo:
The concept that open magnetic flux of the Sun (rooted with one and only one footpoint at the Sun) is a conserved quantity is taking root in the heliospheric community. Observations show that the Sun's open magnetic flux returns to the baseline from one solar minimum to the next. The temporary enhancement in the 1 AU heliospheric magnetic flux near solar maximum can be accounted for by the temporary creation of closed magnetic flux (with two footpoints at the Sun) during the ejection of coronal mass ejections (CMEs), which are more frequent near solar maximum. As a part of the International Heliophysical Year activities, this paper reviews two recently discussed consequences of open flux conservation: the reversal of open magnetic flux over the solar cycle driven by Coronal Mass Ejections and the impacts of open flux conservation on the global structure of the heliospheric magnetic field. These studies demonstrate the inherent linkages between coronal mass ejections, footpoint motions back at the Sun, and the global structure and evolution of the heliospheric magnetic field.
Resumo:
Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy.
Resumo:
With its highly fluctuating ion production matrix-assisted laser desorption/ionization (MALDI) poses many practical challenges for its application in mass spectrometry. Instrument tuning and quantitative ion abundance measurements using ion signal alone depend on a stable ion beam. Liquid MALDI matrices have been shown to be a promising alternative to the commonly used solid matrices. Their application in areas where a stable ion current is essential has been discussed but only limited data have been provided to demonstrate their practical use and advantages in the formation of stable MALDI ion beams. In this article we present experimental data showing high MALDI ion beam stability over more than two orders of magnitude at high analytical sensitivity (low femtomole amount prepared) for quantitative peptide abundance measurements and instrument tuning in a MALDI Q-TOF mass spectrometer. Samples were deposited on an inexpensive conductive hydrophobic surface and shrunk to droplets <10 nL in size. By using a sample droplet <10 nL it was possible to acquire data from a single irradiated spot for roughly 10,000 shots with little variation in ion signal intensity at a laser repetition rate of 5-20 Hz.
Resumo:
We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.