11 resultados para Cell imaging
em CentAUR: Central Archive University of Reading - UK
Resumo:
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin’s substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells’ ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone’s effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.
Resumo:
Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8m pores of a membrane using xCELLigence technology. Long-term exposure (37weeks) to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.
Resumo:
One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
The use of light microscopy and DMACA staining strongly suggested that plant and animal cell nuclei act as sinks for flavanols [1, 2]. Detailed uv-vis spectroscopic titration experiments indicated that histone proteins are the likely binding sites in the nucleus [2]. Here we report the development of a multi-photon excitation microscopy technique combined with fluorescent lifetime measurements of flavanols. Using this technique, (+) catechin, (-) epicatechin and (-) epigallocatechin gallate (EGCG) showed strikingly different excited state lifetimes in solution. Interaction of histone proteins with flavanols was indicated by the appearance of a significant τ2-component of 1.7 to 4.0ns. Tryptophan interference could be circumvented in the in vivo fluorescence lifetime imaging microscopy (FLIM) experiments with 2-photon excitation at 630nm. This enabled visualisation and semi-quantitative measurements that demonstrated unequivocally the absorption of (+)catechin, (-)epicatechin and EGCG by nuclei of onion cells. 3D FLIM revealed for the first time that externally added EGCG penetrated the whole nucleus in onion cells. The relative proportions of EGCG in cytoplasm: nucleus: nucleoli were ca. 1:10:100. FLIM experiments may therefore facilitate probing the health effects of EGCG, which is the major constituent of green tea.
Resumo:
Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.
Resumo:
Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.
Resumo:
A parallel pipelined array of cells suitable for real-time computation of histograms is proposed. The cell architecture builds on previous work obtained via C-slow retiming techniques and can be clocked at 65 percent faster frequency than previous arrays. The new arrays can be exploited for higher throughput particularly when dual data rate sampling techniques are used to operate on single streams of data from image sensors. In this way, the new cell operates on a p-bit data bus which is more convenient for interfacing to camera sensors or to microprocessors in consumer digital cameras.
Resumo:
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.
Resumo:
MS-based proteomic methods were utilised for the first time in the discovery of novel penile cancer biomarkers. MALDI MS imaging was used to obtain the in situ biomolecular MS profile of squamous cell carcinoma of the penis which was then compared to benign epithelial MS profiles. Spectra from cancerous and benign tissue areas were examined to identify MS peaks that best distinguished normal epithelial cells from invasive squamous epithelial cells, providing crucial evidence to suggest S100A4 to be differentially expressed. Verification by immunohistochemistry resulted in positive staining for S100A4 in a sub-population of invasive but not benign epithelial cells.