51 resultados para Bivariate Hermite polynomials

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clinical trials, situations often arise where more than one response from each patient is of interest; and it is required that any decision to stop the study be based upon some or all of these measures simultaneously. Theory for the design of sequential experiments with simultaneous bivariate responses is described by Jennison and Turnbull (Jennison, C., Turnbull, B. W. (1993). Group sequential tests for bivariate response: interim analyses of clinical trials with both efficacy and safety endpoints. Biometrics 49:741-752) and Cook and Farewell (Cook, R. J., Farewell, V. T. (1994). Guidelines for monitoring efficacy and toxicity responses in clinical trials. Biometrics 50:1146-1152) in the context of one efficacy and one safety response. These expositions are in terms of normally distributed data with known covariance. The methods proposed require specification of the correlation, ρ between test statistics monitored as part of the sequential test. It can be difficult to quantify ρ and previous authors have suggested simply taking the lowest plausible value, as this will guarantee power. This paper begins with an illustration of the effect that inappropriate specification of ρ can have on the preservation of trial error rates. It is shown that both the type I error and the power can be adversely affected. As a possible solution to this problem, formulas are provided for the calculation of correlation from data collected as part of the trial. An adaptive approach is proposed and evaluated that makes use of these formulas and an example is provided to illustrate the method. Attention is restricted to the bivariate case for ease of computation, although the formulas derived are applicable in the general multivariate case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, Bayesian decision procedures are developed for dose-escalation studies based on binary measures of undesirable events and continuous measures of therapeutic benefit. The methods generalize earlier approaches where undesirable events and therapeutic benefit are both binary. A logistic regression model is used to model the binary responses, while a linear regression model is used to model the continuous responses. Prior distributions for the unknown model parameters are suggested. A gain function is discussed and an optional safety constraint is included. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feedback design for a second-order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second-order closed loop system but also that the system is robust, or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured perturbations. Numerically reliable methods for solving the structured generalized linear problem are developed that take advantage of the special properties of the system in order to minimize the computational work required. In this part of the work we treat the case where the leading coefficient matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In a second part, we will examine the case where the open loop matrix polynomial is not necessarily regular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the use of bivariate 3d empirical orthogonal functions (EOFs) in characterising low frequency variability of the Atlantic thermohaline circulation (THC) in the Hadley Centre global climate model, HadCM3. We find that the leading two modes are well correlated with an index of the meridional overturning circulation (MOC) on decadal timescales, with the leading mode alone accounting for 54% of the decadal variance. Episodes of coherent oscillations in the sub-space of the leading EOFs are identified; these episodes are of great interest for the predictability of the THC, and could indicate the existence of different regimes of natural variability. The mechanism identified for the multi-decadal variability is an internal ocean mode, dominated by changes in convection in the Nordic Seas, which lead the changes in the MOC by a few years. Variations in salinity transports from the Arctic and from the North Atlantic are the main feedbacks which control the oscillation. This mode has a weak feedback onto the atmosphere and hence a surface climatic influence. Interestingly, some of these climate impacts lead the changes in the overturning. There are also similarities to observed multi-decadal climate variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study uses a Granger causality time series modeling approach to quantitatively diagnose the feedback of daily sea surface temperatures (SSTs) on daily values of the North Atlantic Oscillation (NAO) as simulated by a realistic coupled general circulation model (GCM). Bivariate vector autoregressive time series models are carefully fitted to daily wintertime SST and NAO time series produced by a 50-yr simulation of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). The approach demonstrates that there is a small yet statistically significant feedback of SSTs oil the NAO. The SST tripole index is found to provide additional predictive information for the NAO than that available by using only past values of NAO-the SST tripole is Granger causal for the NAO. Careful examination of local SSTs reveals that much of this effect is due to the effect of SSTs in the region of the Gulf Steam, especially south of Cape Hatteras. The effect of SSTs on NAO is responsible for the slower-than-exponential decay in lag-autocorrelations of NAO notable at lags longer than 10 days. The persistence induced in daily NAO by SSTs causes long-term means of NAO to have more variance than expected from averaging NAO noise if there is no feedback of the ocean on the atmosphere. There are greater long-term trends in NAO than can be expected from aggregating just short-term atmospheric noise, and NAO is potentially predictable provided that future SSTs are known. For example, there is about 10%-30% more variance in seasonal wintertime means of NAO and almost 70% more variance in annual means of NAO due to SST effects than one would expect if NAO were a purely atmospheric process.