11 resultados para Behavior modification techniques
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new wave of computerised therapy is under development which, rather than simulating talking therapies, uses bias modification techniques to target the core psychological process underlying anxiety. Such interventions are aimed at anxiety disorders, and are yet to be adapted for co-morbid anxiety in psychosis. The cognitive bias modification (CBM) paradigm delivers repeated exposure to stimuli in order to train individuals to resolve ambiguous information in a positive, rather than anxiety provoking, manner. The current study is the first to report data from a modified form of CBM which targets co-morbid anxiety within individuals diagnosed with schizophrenia. Our version of CBM involved exposure to one hundred vignettes presented over headphones. Participants were instructed to actively simulate the described scenarios via visual imagery. Twenty-one participants completed both a single session of CBM and a single control condition session in counter-balanced order. Within the whole sample, there was no significant improvement on interpretation bias of CBM or state anxiety, relative to the control condition. However, in line with previous research, those participants who engage in higher levels of visual imagery exhibited larger changes in interpretation bias. We discuss the implications for harnessing computerised CBM therapy developments for co-morbid anxiety in schizophrenia.
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.
Resumo:
Mixture model techniques are applied to a daily index of monsoon convection from ERA‐40 reanalysis to show regime behavior. The result is the existence of two significant regimes showing preferred locations of convection within the Asia/Western‐North Pacific domain, with some resemblance to active‐break events over India. Simple trend analysis over 1958–2001 shows that the first regime has become less frequent while the second becomes much more dominant. Both undergo a change in structure contributing to the total OLR trend over the ERA‐40 period. Stratifying the data according to a large‐scale dynamical index of monsoon interannual variability, we show the regime occurrence to be strongly perturbed by the seasonal condition, in agreement with conceptual ideas. This technique could be used to further examine predictability issues relating the seasonal mean and intraseasonal monsoon variability or to explore changes in monsoon behavior in centennial‐scale model integrations.
Resumo:
Using the recently-developed mean–variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, an analysis is presented of the spatiotemporal dynamics of their perturbations, showing how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. In particular, a divide is seen between ensembles based on singular vectors or empirical orthogonal functions, and those based on bred vector, Ensemble Transform with Rescaling or Ensemble Kalman Filter techniques. Consideration is also given to the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. Finally, the use of the MVL technique to assist in selecting models for inclusion in a multi-model ensemble is discussed, and an experiment suggested to test its potential in this context.
Resumo:
We apply modern synchrotron-based structural techniques to the study of serine adsorbed on the pure andAumodified intrinsically chiral Cu{531} surface. XPS and NEXAFS data in combination with DFT show that on the pure surface both enantiomers adsorb in l4 geometries (with de-protonated b-OH groups) at low coverage and in l3 geometries at saturation coverage. Significantly larger enantiomeric differences are seen for the l4 geometries, which involve substrate bonds of three side groups of the chiral center, i.e. a three-point interaction. The l3 adsorption geometry, where only the carboxylate and amino groups form substrate bonds, leads to smaller but still significant enantiomeric differences, both in geometry and the decomposition behavior. When Cu{531} is modified by the deposition of 1 and 2ML Au the orientations of serine at saturation coverage are significantly different from those on the clean surface. In all cases, however, a l3 bond coordination is found at saturation involving different numbers of Au atoms, which leads to relatively small enantiomeric differences.
Resumo:
As in any technology systems, analysis and design issues are among the fundamental challenges in persuasive technology. Currently, the Persuasive Systems Development (PSD) framework is considered to be the most comprehensive framework for designing and evaluation of persuasive systems. However, the framework is limited in terms of providing detailed information which can lead to selection of appropriate techniques depending on the variable nature of users or use over time. In light of this, we propose a model which is intended for analysing and implementing behavioural change in persuasive technology called the 3D-RAB model. The 3D-RAB model represents the three dimensional relationships between attitude towards behaviour, attitude towards change or maintaining a change, and current behaviour, and distinguishes variable levels in a user’s cognitive state. As such it provides a framework which could be used to select appropriate techniques for persuasive technology.
Resumo:
The technique of constructing a transformation, or regrading, of a discrete data set such that the histogram of the transformed data matches a given reference histogram is commonly known as histogram modification. The technique is widely used for image enhancement and normalization. A method which has been previously derived for producing such a regrading is shown to be “best” in the sense that it minimizes the error between the cumulative histogram of the transformed data and that of the given reference function, over all single-valued, monotone, discrete transformations of the data. Techniques for smoothed regrading, which provide a means of balancing the error in matching a given reference histogram against the information lost with respect to a linear transformation are also examined. The smoothed regradings are shown to optimize certain cost functionals. Numerical algorithms for generating the smoothed regradings, which are simple and efficient to implement, are described, and practical applications to the processing of LANDSAT image data are discussed.
Resumo:
Existing research has given little attention to the relationship between culture characteristics and consumer’s internal beliefs particularly in the pre-purchase stage, and how this relationship affects consumer’s purchase decision. This paper considers the theory of cognitive dissonance and its extended model (the 3D-RAB), as a means to study the current distribution of consumer’s pre-purchase cognitive dissonance, which allows us to investigate the effects of culture characteristics on this distribution. Results revealed that individualism versus collectivism and high power distance dimensions, from Hofstede’s cultural model, influence consumer’s pre-purchase cognitive dissonance. These dimensions must be considered in the design of e-commerce website, by tailoring motivational/influences methods and techniques to reflect targeted consumers culture.
Resumo:
The courtship behavior of the navel orangeworm, Amyelois transitella, was examined in a wind tunnel. Sixty nine courtship sequences were analyzed and successful sequences divided into two categories: rapid courtship sequences, which involved few breaks in contact, short or no periods of male/female chasing and lasted <10 s between initial contact and mating; and prolonged courtship sequences, which involved many breaks in contact, extended periods of male/female chasing and lasted >10 s. Fifty six (81%) courtships were successful (50.7% rapid courtship and 30.4% prolonged courtship); the remaining 13 (18.8%) sequences were failed courtships. Of failed courtships, 9 (13.0%) were due to males losing contact with females during courtship chases and 4 (5.8%) due to females flying away immediately after male contact. Of all courtship sequences involving a break in contact during a chase, 38.5% resulted in an unsuccessful mating attempt. These findings contrast with previous studies of the courtship behavior of the navel orangeworm, potentially indicating that the type of bioassay used to study courtship may have a large effect on the behavioral sequences displayed. We evaluate several diagnostic techniques for the analysis of sequences of behavioral transitions.
Resumo:
Traditionally, biosensors have been defined as consisting of two parts; a biological part, which is used to detect chemical or physical changes in the environment, and a corresponding electronic component, which tranduces the signal into an electronically readable format. Biosensors are used for detection of volatile compounds often at a level of sensitivity unattainable by traditional analytical techniques. Classical biosensors and traditional analytical techniques do not allow an ecological context to be imparted to the volatile compound/s under investigation. Therefore, we propose the use of behavioral biosensors, in which a whole organism is utilized for the analysis of chemical stimuli. In this case, the organism detects a chemical or physical change and demonstrates this detection through modifications of its behavior; it is the organism's behavior itself that defines the biosensor. In this review, we evaluate the use and future prospects of behavioral biosensors, with a particular focus on parasitic wasps.