72 resultados para 3D coordinates
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new algorithm is described for refining the pose of a model of a rigid object, to conform more accurately to the image structure. Elemental 3D forces are considered to act on the model. These are derived from directional derivatives of the image local to the projected model features. The convergence properties of the algorithm is investigated and compared to a previous technique. Its use in a video sequence of a cluttered outdoor traffic scene is also illustrated and assessed.
Resumo:
Different optimization methods can be employed to optimize a numerical estimate for the match between an instantiated object model and an image. In order to take advantage of gradient-based optimization methods, perspective inversion must be used in this context. We show that convergence can be very fast by extrapolating to maximum goodness-of-fit with Newton's method. This approach is related to methods which either maximize a similar goodness-of-fit measure without use of gradient information, or else minimize distances between projected model lines and image features. Newton's method combines the accuracy of the former approach with the speed of convergence of the latter.
Resumo:
Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the tarte relative to other objects was varied, the ration of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying geometric reconstruction.
Resumo:
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.
Resumo:
(From author). Comments: First 3D stochastic/fractal model of cirrus; first detailed analysis & explanation of power spectra of ice water content, including first observations of 50-km scale break and mixing-induced steepening of spectrum; first demonstration of the potential effect of wind shear on radiative fluxes by changing fall-streak orientation. Has spawned work on the effect of 3D photon transport on the radiative effects of cirrus clouds.
Resumo:
Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.
Resumo:
The calculation of accurate and reliable vibrational potential functions and normal co-ordinates is discussed, for such simple polyatomic molecules as it may be possible. Such calculations should be corrected for the effects of anharmonicity and of resonance interactions between the vibrational states, and should be fitted to all the available information on all isotopic species: particularly the vibrational frequencies, Coriolis zeta constants and centrifugal distortion constants. The difficulties of making these corrections, and of making use of the observed data are reviewed. A programme for the Ferranti Mercury Computer is described by means of which harmonic vibration frequencies and normal co-ordinate vectors, zeta factors and centrifugal distortion constants can be calculated, from a given force field and from given G-matrix elements, etc. The programme has been used on up to 5 × 5 secular equations for which a single calculation and output of results takes approximately l min; it can readily be extended to larger determinants. The best methods of using such a programme and the possibility of reversing the direction of calculation are discussed. The methods are applied to calculating the best possible vibrational potential function for the methane molecule, making use of all the observed data.
Resumo:
Force constants and normal coordinates have been recalculated for all of the in-plane vibrations of benzene, making use of the recently observed data on one of the Coriolis constants in the E2g species from the work of Callomon et al. The extent to which the force field is uniquely determined by the data is reviewed for each symmetry species in turn, and the results of a force constant refinement calculation are reported in which a modified valency force field was used based on the hybrid orbital model. The results show considerable differences from Whiffen's normal coordinates for benzene, but somewhat smaller differences from Scherer's recent calculations.
Resumo:
Redundancy relations between vibrational coordinates may be linear (as for rectilinear coordinates used in deriving a G matrix), or non-linear (as for curvilinear coordinates used in formulating model force fields). It is shown that geometrically defined internal coordinates are necessarily curvilinear. Hence it is shown that linear force constants can occur in model force field calculations involving redundant coordinates, in disagreement with the recent proposal of Gussoni and Zerbi.
Resumo:
The potential‐energy functions found by Chang for the methyl halides have been put into valence‐type form and revised to eliminate inconsistencies and to accord with the true (nontetrahedral) geometry and the normal frequencies (corrected for Fermi resonance and anharmonicity). The resulting valence‐type force constants and normal coordinates are given for light (CH3) and heavy (CD3) chlorides, bromides, and iodides.
Resumo:
A method is discussed for imposing any desired constraint on the force field obtained in a force constant refinement calculation. The application of this method to force constant refinement calculations for the methyl halide molecules is reported. All available data on the vibration frequencies, Coriolis interaction constants and centrifugal stretching constants of CH3X and CD3X molecules were used in the refinements, but despite this apparent abundance of data it was found that constraints were necessary in order to obtain a unique solution to the force field. The results of unconstrained calculations, and of three different constrained calculations, are reported in this paper. The constrained models reported are a Urey—Bradley force field, a modified valence force field, and a constraint based on orbital-following bond-hybridization arguments developed in the following paper. The results are discussed, and compared with previous results for these molecules. The third of the above models is found to reproduce the observed data better than either of the first two, and additional reasons are given for preferring this solution to the force field for the methyl halide molecules.
Resumo:
Orthogonal internal coordinates are defined which have useful properties for constructing the potential energy functions of triatomic molecules with two or three minima on the surface. The coordinates are used to obtain ground state potentials of ClOO and HOF, both of which have three minima.
Resumo:
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues.
Resumo:
The 5' terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 313 (VTg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3D(pol). To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3D(pol) in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV ere has been identified previously to be within the 5' untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 313 peptides has now been determined, and the role of the FMDV ere (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.