218 resultados para Object Memory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive control mechanisms—such as inhibition—decrease the likelihood that goal-directed activity is ceded to irrelevant events. Here, we use the action of auditory distraction to show how retrieval from episodic long-term memory is affected by competitor inhibition. Typically, a sequence of to-be-ignored spoken distracters drawn from the same semantic category as a list of visually-presented to-be-recalled items impairs free recall performance. In line with competitor inhibition theory (Anderson, 2003), free recall was worse for items on a probe trial if they were a repeat of distracter items presented during the previous, prime, trial (Experiment 1). This effect was only produced when the distracters were dominant members of the same category as the to-be-recalled items on the prime. For prime trials in which distracters were low-dominant members of the to-be-remembered item category or were unrelated to that category—and hence not strong competitors for retrieval—positive priming was found (Experiments 2 & 3). These results are discussed in terms of inhibitory approaches to negative priming and memory retrieval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a solution for predicting moving/moving and moving/static collisions of objects within a virtual environment. Feasible prediction in real-time virtual worlds can be obtained by encompassing moving objects within a sphere and static objects within a convex polygon. Fast solutions are then attainable by describing the movement of objects parametrically in time as a polynomial.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. Objectives: The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. Results: We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. Conclusions: The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK–CREB– BDNF pathway in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Left inferior frontal gyrus (IFG) is a critical neural substrate for the resolution of proactive interference (PI) in working memory. We hypothesized that left IFG achieves this by controlling the influence of familiarity- versus recollection-based information about memory probes. Consistent with this idea, we observed evidence for an early (200 msec)-peaking signal corresponding to memory probe familiarity and a late (500 msec)-resolving signal corresponding to full accrual of trial-related contextual ("recollection-based") information. Next, we applied brief trains of repetitive transcranial magnetic stimulation (rTMS) time locked to these mnemonic signals, to left IFG and to a control region. Only early rTMS of left IFG produced a modulation of the false alarm rate for high-PI probes. Additionally, the magnitude of this effect was predicted by individual differences in susceptibility to PI. These results suggest that left IFG-based control may bias the influence of familiarity- and recollection-based signals on recognition decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benefits and costs on prospective memory performance, of enactment at encoding and a semantic association between a cue-action word pair, were investigated in two experiments. Findings revealed superior performance for both younger and older adults following enactment, in contrast to verbal encoding, and when cue-action semantic relatedness was high. Although younger adults outperformed older adults, age did not moderate benefits of cue-action relatedness or enactment. Findings from a second experiment revealed that the inclusion of an instruction to perform a prospective memory task led to increments in response latency to items from the ongoing activity in which that task was embedded, relative to latencies when the ongoing task only was performed. However, this task interference ‘cost’ did not differ as a function of either cue-action relatedness or enactment. We argue that the high number of cue-action pairs employed here influenced meta-cognitive consciousness, hence determining attention allocation, in all experimental conditions.