131 resultados para mesh: Cybernetics
Resumo:
Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown.
Resumo:
One goal in the development of distributed virtual environments (DVEs) is to create a system such that users are unaware of the distribution-the distribution should be transparent. The paper begins by discussing the general issues in DVEs that might make this possible, and a system that allows some level of distribution transparency is described. The system described suffers from effects of inconsistency, which in turn cause undesirable visual effects. The causal surface is introduced as a solution that removes these visual effects. The paper then introduces two determining factors of distribution transparency relating to user perception and performance. With regard to these factors, two hypotheses are stated relating to the causal surface. A user-trial on forty-five subjects is used to validate the hypotheses. A discussion of the results of the trial concludes that the causal surface solution does significantly improve the distribution transparency in a DVE.
Resumo:
Research to date has tended to concentrate on bandwidth considerations to increase scalability in distributed interactive simulation and virtual reality systems. This paper proposes that the major concern for latency in user interaction is that of the fundamental limit of communication rate due to the speed of light. Causal volumes and surfaces are introduced as a model of the limitations of causality caused by this fundamental delay. The concept of virtual world critical speed is introduced, which can be determined from the causal surface. The implications of the critical speed are discussed, and relativistic dynamics are used to constrain the object speed, in the same way speeds are bounded in the real world.
Resumo:
Visual telepresence seeks to extend existing teleoperative capability by supplying the operator with a 3D interactive view of the remote environment. This is achieved through the use of a stereo camera platform which, through appropriate 3D display devices, provides a distinct image to each eye of the operator, and which is slaved directly from the operator's head and eye movements. However, the resolution within current head mounted displays remains poor, thereby reducing the operator's visual acuity. This paper reports on the feasibility of incorporation of eye tracking to increase resolution and investigates the stability and control issues for such a system. Continuous domain and discrete simulations are presented which indicates that eye tracking provides a stable feedback loop for tracking applications, though some empirical testing (currently being initiated) of such a system will be required to overcome indicated stability problems associated with micro saccades of the human operator.
Resumo:
Adaptive methods which “equidistribute” a given positive weight function are now used fairly widely for selecting discrete meshes. The disadvantage of such schemes is that the resulting mesh may not be smoothly varying. In this paper a technique is developed for equidistributing a function subject to constraints on the ratios of adjacent steps in the mesh. Given a weight function $f \geqq 0$ on an interval $[a,b]$ and constants $c$ and $K$, the method produces a mesh with points $x_0 = a,x_{j + 1} = x_j + h_j ,j = 0,1, \cdots ,n - 1$ and $x_n = b$ such that\[ \int_{xj}^{x_{j + 1} } {f \leqq c\quad {\text{and}}\quad \frac{1} {K}} \leqq \frac{{h_{j + 1} }} {{h_j }} \leqq K\quad {\text{for}}\, j = 0,1, \cdots ,n - 1 . \] A theoretical analysis of the procedure is presented, and numerical algorithms for implementing the method are given. Examples show that the procedure is effective in practice. Other types of constraints on equidistributing meshes are also discussed. The principal application of the procedure is to the solution of boundary value problems, where the weight function is generally some error indicator, and accuracy and convergence properties may depend on the smoothness of the mesh. Other practical applications include the regrading of statistical data.
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $p$-version
Resumo:
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
This paper proposes and demonstrates an approach, Skilloscopy, to the assessment of decision makers. In an increasingly sophisticated, connected and information-rich world, decision making is becoming both more important and more difficult. At the same time, modelling decision-making on computers is becoming more feasible and of interest, partly because the information-input to those decisions is increasingly on record. The aims of Skilloscopy are to rate and rank decision makers in a domain relative to each other: the aims do not include an analysis of why a decision is wrong or suboptimal, nor the modelling of the underlying cognitive process of making the decisions. In the proposed method a decision-maker is characterised by a probability distribution of their competence in choosing among quantifiable alternatives. This probability distribution is derived by classic Bayesian inference from a combination of prior belief and the evidence of the decisions. Thus, decision-makers’ skills may be better compared, rated and ranked. The proposed method is applied and evaluated in the gamedomain of Chess. A large set of games by players across a broad range of the World Chess Federation (FIDE) Elo ratings has been used to infer the distribution of players’ rating directly from the moves they play rather than from game outcomes. Demonstration applications address questions frequently asked by the Chess community regarding the stability of the Elo rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The method of Skilloscopy may be applied in any decision domain where the value of the decision-options can be quantified.
Resumo:
In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.
Resumo:
A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.
Resumo:
With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.
Resumo:
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
This paper details an investigation into sensory substitution by means of direct electrical stimulation of the tongue for the purpose of information input to the human brain. In particular, a device has been constructed and a series of trials have been performed in order to demonstrate the efficacy and performance of an electro-tactile array mounted onto the tongue surface for the purpose of sensory augmentation. Tests have shown that by using a low resolution array a computer-human feedback loop can be successfully implemented by humans in order to complete tasks such as object tracking, surface shape identification and shape recognition with no training or prior experience with the device. Comparisons of this technique have been made with visual alternatives and these show that the tongue based tactile array can match such methods in convenience and accuracy in performing simple tasks.
Resumo:
This paper introduces a novel approach for free-text keystroke dynamics authentication which incorporates the use of the keyboard’s key-layout. The method extracts timing features from specific key-pairs. The Euclidean distance is then utilized to find the level of similarity between a user’s profile data and his/her test data. The results obtained from this method are reasonable for free-text authentication while maintaining the maximum level of user relaxation. Moreover, it has been proven in this study that flight time yields better authentication results when compared with dwell time. In particular, the results were obtained with only one training sample for the purpose of practicality and ease of real life application.