195 resultados para nonlinear errors
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.
Resumo:
In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.
Resumo:
A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.
Resumo:
This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.
Resumo:
View-based and Cartesian representations provide rival accounts of visual navigation in humans, and here we explore possible models for the view-based case. A visual “homing” experiment was undertaken by human participants in immersive virtual reality. The distributions of end-point errors on the ground plane differed significantly in shape and extent depending on visual landmark configuration and relative goal location. A model based on simple visual cues captures important characteristics of these distributions. Augmenting visual features to include 3D elements such as stereo and motion parallax result in a set of models that describe the data accurately, demonstrating the effectiveness of a view-based approach.
Resumo:
Background: Medication errors in general practice are an important source of potentially preventable morbidity and mortality. Building on previous descriptive, qualitative and pilot work, we sought to investigate the effectiveness, cost-effectiveness and likely generalisability of a complex pharm acist-led IT-based intervention aiming to improve prescribing safety in general practice. Objectives: We sought to: • Test the hypothesis that a pharmacist-led IT-based complex intervention using educational outreach and practical support is more effective than simple feedback in reducing the proportion of patients at risk from errors in prescribing and medicines management in general practice. • Conduct an economic evaluation of the cost per error avoided, from the perspective of the National Health Service (NHS). • Analyse data recorded by pharmacists, summarising the proportions of patients judged to be at clinical risk, the actions recommended by pharmacists, and actions completed in the practices. • Explore the views and experiences of healthcare professionals and NHS managers concerning the intervention; investigate potential explanations for the observed effects, and inform decisions on the future roll-out of the pharmacist-led intervention • Examine secular trends in the outcome measures of interest allowing for informal comparison between trial practices and practices that did not participate in the trial contributing to the QRESEARCH database. Methods Two-arm cluster randomised controlled trial of 72 English general practices with embedded economic analysis and longitudinal descriptive and qualitative analysis. Informal comparison of the trial findings with a national descriptive study investigating secular trends undertaken using data from practices contributing to the QRESEARCH database. The main outcomes of interest were prescribing errors and medication monitoring errors at six- and 12-months following the intervention. Results: Participants in the pharmacist intervention arm practices were significantly less likely to have been prescribed a non-selective NSAID without a proton pump inhibitor (PPI) if they had a history of peptic ulcer (OR 0.58, 95%CI 0.38, 0.89), to have been prescribed a beta-blocker if they had asthma (OR 0.73, 95% CI 0.58, 0.91) or (in those aged 75 years and older) to have been prescribed an ACE inhibitor or diuretic without a measurement of urea and electrolytes in the last 15 months (OR 0.51, 95% CI 0.34, 0.78). The economic analysis suggests that the PINCER pharmacist intervention has 95% probability of being cost effective if the decision-maker’s ceiling willingness to pay reaches £75 (6 months) or £85 (12 months) per error avoided. The intervention addressed an issue that was important to professionals and their teams and was delivered in a way that was acceptable to practices with minimum disruption of normal work processes. Comparison of the trial findings with changes seen in QRESEARCH practices indicated that any reductions achieved in the simple feedback arm were likely, in the main, to have been related to secular trends rather than the intervention. Conclusions Compared with simple feedback, the pharmacist-led intervention resulted in reductions in proportions of patients at risk of prescribing and monitoring errors for the primary outcome measures and the composite secondary outcome measures at six-months and (with the exception of the NSAID/peptic ulcer outcome measure) 12-months post-intervention. The intervention is acceptable to pharmacists and practices, and is likely to be seen as costeffective by decision makers.