95 resultados para pacs: virtual reality


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visually impaired people have a very different view of the world such that seemingly simple environments as viewed by a ‘normally’ sighted people can be difficult for people with visual impairments to access and move around. This is a problem that can be hard to fully comprehend by people with ‘normal vision’ even when guidelines for inclusive design are available. This paper investigates ways in which image processing techniques can be used to simulate the characteristics of a number of common visual impairments in order to provide, planners, designers and architects, with a visual representation of how people with visual impairments view their environment, thereby promoting greater understanding of the issues, the creation of more accessible buildings and public spaces and increased accessibility for visually impaired people in everyday situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Realistic medical simulation has great potential for augmenting or complimenting traditional medical training or surgery planning, and Virtual Reality (VR) is a key enabling technology for delivering this goal. Although, medical simulators are now widely used in medical institutions, the majority of them are still reliant on desktop monitor displays, and many are restricted in their modelling capability to minimally invasive or endoscopic surgery scenarios. Whilst useful, such models lack the realism and interaction of the operating theatre. In this paper, we describe how we are advancing the technology by simulating open surgery procedures in an Immersive Projection Display CAVE environment thereby enabling medical practitioners to interact with their virtual patients in a more realistic manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stroke is a leading cause of disability in particular affecting older people. Although the causes of stroke are well known and it is possible to reduce these risks, there is still a need to improve rehabilitation techniques. Early studies in the literature suggest that early intensive therapies can enhance a patient's recovery. According to physiotherapy literature, attention and motivation are key factors for motor relearning following stroke. Machine mediated therapy offers the potential to improve the outcome of stroke patients engaged on rehabilitation for upper limb motor impairment. Haptic interfaces are a particular group of robots that are attractive due to their ability to safely interact with humans. They can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. The creation of human-like trajectories is essential for retraining upper limb movements of people that have lost manipulation functions following stroke. By coupling models for human arm movement with haptic interfaces and VR technology it is possible to create a new class of robot mediated neuro rehabilitation tools. This paper provides an overview on different approaches to robot mediated therapy and describes a system based on haptics and virtual reality visualisation techniques, where particular emphasis is given to different control strategies for interaction derived from minimum jerk theory and the aid of virtual and mixed reality based exercises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of a Visual Telepresence System is to provide the operator with a high fidelity image from a remote stereo camera pair linked to a pan/tilt device such that the operator may reorient the camera position by use of head movement. Systems such as these which utilise virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the displays is generally fixed and is most suitable only for viewing elements of a scene at a particular distance. To address such limitations, a prototype system has been developed where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator. This paper explores why it is necessary to actively adjust the display system as well as the cameras and justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms. The performance and accuracy of the system is assessed with respect to eye movement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A visual telepresence system has been developed at the University of Reading which utilizes eye tracing to adjust the horizontal orientation of the cameras and display system according to the convergence state of the operator's eyes. Slaving the cameras to the operator's direction of gaze enables the object of interest to be centered on the displays. The advantage of this is that the camera field of view may be decreased to maximize the achievable depth resolution. An active camera system requires an active display system if appropriate binocular cues are to be preserved. For some applications, which critically depend upon the veridical perception of the object's location and dimensions, it is imperative that the contribution of binocular cues to these judgements be ascertained because they are directly influenced by camera and display geometry. Using the active telepresence system, we investigated the contribution of ocular convergence information to judgements of size, distance and shape. Participants performed an open- loop reach and grasp of the virtual object under reduced cue conditions where the orientation of the cameras and the displays were either matched or unmatched. Inappropriate convergence information produced weak perceptual distortions and caused problems in fusing the images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organizational issues are inhibiting the implementation and strategic use of information technologies (IT) in the construction sector. This paper focuses on these issues and explores processes by which emerging technologies can be introduced into construction organizations. The paper is based on a case study, conducted in a major house building company that was implementing a virtual reality (VR) system for internal design review in the regional offices. Interviews were conducted with different members of the organization to explore the introduction process and the use of the system. The case study findings provide insight into the process of change, the constraints that inhibit IT implementation and the relationship between new technology and work patterns within construction organizations. They suggest that (1) user-developer communications are critical for the successful implementation of non-diffused innovations in the construction industry; and (2) successful uptake of IT requires both strategic decision-making by top management and decision-making by technical managers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of new technologies, such as virtual reality (VR), is important to corporations, yet understanding of their successful implementation is insuf. ciently developed. In this paper a case study is used to analyse the introduction of VR use in a British housebuilding company. Although the implementation was not successful in the manner initially anticipated, the study provides insight into the process of change, the constraints that inhibit implementation and the relationship between new technology and work organization. Comparison is made with the early use of CAD and similarities and differences between empirical . ndings of the case study and the previous literature are discussed.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safety

Relevância:

80.00% 80.00%

Publicador:

Resumo:

View-based and Cartesian representations provide rival accounts of visual navigation in humans, and here we explore possible models for the view-based case. A visual “homing” experiment was undertaken by human participants in immersive virtual reality. The distributions of end-point errors on the ground plane differed significantly in shape and extent depending on visual landmark configuration and relative goal location. A model based on simple visual cues captures important characteristics of these distributions. Augmenting visual features to include 3D elements such as stereo and motion parallax result in a set of models that describe the data accurately, demonstrating the effectiveness of a view-based approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visual Telepresence system which utilize virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the display is fixed and is most suitable only for viewing elements of a scene at a particular distance. In such a system, the operator's ability to gaze around without use of head movement is severely limited. A trade off must be made between a poor viewing resolution or a narrow width of viewing field. To address these limitations a prototype system where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator has been developed. This paper explores the reasons why is necessary to actively adjust both the display system and the cameras and furthermore justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms, An assessment of the performance of the system against a fixed camera/display system when operators are assigned basic tasks involving depth and distance/size perception. The sensitivity to variations in transient performance of the display and camera vergence is also assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.