119 resultados para Segmentation algorithms
Resumo:
Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
This paper analyses developments in the growth and configuration of the institutional savings markets within the European Union. The paper discusses the changing socio-economic context in which investment services within the EU are being delivered. The is followed by an examination of drivers of market integration such as the growth and consolidation of the fund management industry, the demographic and fiscal pressures for reform of pensions markets and the process and effects of the deregulation of investment services markets. There is a review of outstanding sources of market segmentation. The projections for future growth in pensions are outlined and implications for real estate investment assessed. It is concluded that, although numerous imponderables render reliable quantitative projections problematic, growth and restructuring of the institutional savings market is likely to increase cross-border capital flows to real estate markets.
Resumo:
Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.
Resumo:
This study examines the numerical accuracy, computational cost, and memory requirements of self-consistent field theory (SCFT) calculations when the diffusion equations are solved with various pseudo-spectral methods and the mean field equations are iterated with Anderson mixing. The different methods are tested on the triply-periodic gyroid and spherical phases of a diblock-copolymer melt over a range of intermediate segregations. Anderson mixing is found to be somewhat less effective than when combined with the full-spectral method, but it nevertheless functions admirably well provided that a large number of histories is used. Of the different pseudo-spectral algorithms, the 4th-order one of Ranjan, Qin and Morse performs best, although not quite as efficiently as the full-spectral method.
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Resumo:
Some points of the paper by N.K. Nichols (see ibid., vol.AC-31, p.643-5, 1986), concerning the robust pole assignment of linear multiinput systems, are clarified. It is stressed that the minimization of the condition number of the closed-loop eigenvector matrix does not necessarily lead to robustness of the pole assignment. It is shown why the computational method, which Nichols claims is robust, is in fact numerically unstable with respect to the determination of the gain matrix. In replying, Nichols presents arguments to support the choice of the conditioning of the closed-loop poles as a measure of robustness and to show that the methods of J Kautsky, N. K. Nichols and P. VanDooren (1985) are stable in the sense that they produce accurate solutions to well-conditioned problems.
Resumo:
A number of computationally reliable direct methods for pole assignment by feedback have recently been developed. These direct procedures do not necessarily produce robust solutions to the problem, however, in the sense that the assigned poles are insensitive to perturbalions in the closed-loop system. This difficulty is illustrated here with results from a recent algorithm presented in this TRANSACTIONS and its causes are examined. A measure of robustness is described, and techniques for testing and improving robustness are indicated.
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.