110 resultados para SPIRAL WAVES
Resumo:
We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed positive constant. The material properties of the media are characterized completely by an index of refraction, which is a bounded measurable function in the layer and takes positive constant values above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as an equivalent mixed system of boundary and domain integral equations, consisting of second-kind integral equations over the layer and interfaces within the layer. Assumptions on the variation of the index of refraction in the layer are then imposed which prove to be sufficient, together with the radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent, general results on the solvability of systems of second kind integral equations on unbounded domains establish existence of solution and continuous dependence in a weighted norm of the solution on the given data. The results obtained apply to the case of scattering by a rough interface between two dielectric media and to many other practical configurations.
The role of baroclinic waves in the initiation of tropical cyclones across the southern Indian Ocean
Resumo:
Cases where tropical storms are initiated simultaneously along one latitude are investigated. It is argued that such structure arises as part of a baroclinic wave. A case from February 2008 is examined using European Centre for Medium-Range Forecasts (ECMWF) analyses; the birth of three tropical cyclones in the low-level cyclonic regions to the east of upper-level troughs suggests that the wave was instrumental for initiation. Archived satellite imagery and storm warnings reveal that baroclinic waves over the southern Indian Ocean accompany tropical cyclogenesis twice a season on average, mainly in late summer, when breaking Rossby waves on the subtropical westerly jet are closest to the Intertropical Convergence Zone (ITCZ). Copyright © 2012 Royal Meteorological Society
Resumo:
We present case studies of the evolution of magnetic wave amplitudes and auroral intensity through the late growth phase and the expansion phase of the substorm cycle. We present strong evidence that substorm-related auroral enhancements are clearly and demonstrably linked to ULF wave amplitudes observed at the same location. In most cases, we find that the highest correlations are observed when the magnetometer time series is advanced in time, indicating that the ULF wave amplitudes start to grow before measured auroral intensities, though interestingly this is not always the case. Further we discuss the four possible reasons that may be able to explain both the timing and the high correlations between these two phenomena, including: a simple coincidence, an artifact of instrumental effects, the response of the ionosphere to magnetic waves and auroral particle precipitation, and finally that ULF waves and auroral particle precipitation are physically linked. We discount coincidence and instrumental effects since in the studies presented here they are unlikely or in general will contribute negligible effects, and we find that the ionospheric response to waves and precipitation can explain some, but not all of the results contained within this paper. Specifically, ionospheric response to substorm waves and auroral precipitation cannot explain that the result that previous studies have shown, that onset of ULF wave activity and the onset of auroral particle precipitation occur at the same time and in the same location. This leaves the possibility that ULF waves and auroral particles are physically linked.
Resumo:
Using a self-consistent drift-kinetic simulation code, we investigate whether electron acceleration owing to shear Alfvén waves in the plasma sheet boundary layer is sufficient to cause auroral brightening in the ionosphere. The free parameters used in the simulation code are guided by in situ observations of wave and plasma parameters in the magnetosphere at distances >4 RE from the Earth. For the perpendicular wavelength used in the study, which maps to ∼4 km at 110 km altitude, there is a clear amplitude threshold which determines whether magnetospheric shear Alfvén waves above the classical auroral acceleration region can excite sufficient electrons to create the aurora. Previous studies reported wave amplitudes that easily exceed this threshold; hence, the results reported in this paper demonstrate that auroral acceleration owing to shear Alfvén waves can occur in the magnetosphere at distances >4 RE from the Earth.
Resumo:
Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth’s geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger vTe=vA, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.
Resumo:
The drag produced by 2D orographic gravity waves trapped at a temperature inversion and waves propagating in the stably stratified layer existing above are explicitly calculated using linear theory, for a two-layer atmosphere with neutral static stability near the surface, mimicking a well-mixed boundary layer. For realistic values of the flow parameters, trapped lee wave drag, which is given by a closed analytical expression, is comparable to propagating wave drag, especially in moderately to strongly non-hydrostatic conditions. In resonant flow, both drag components substantially exceed the single-layer hydrostatic drag estimate used in most parametrization schemes. Both drag components are optimally amplified for a relatively low-level inversion and Froude numbers Fr ≈ 1. While propagating wave drag is maximized for approximately hydrostatic flow, trapped lee wave drag is maximized for l_2 a = O(1) (where l_2 is the Scorer parameter in the stable layer and a is the mountain width). This roughly happens when the horizontal scale of trapped lee waves matches that of the mountain slope. The drag behavior as a function of Fr for l_2 H = 0.5 (where H is the inversion height) and different values of l2a shows good agreement with numerical simulations. Regions of parameter space with high trapped lee wave drag correlate reasonably well with those where lee wave rotors were found to occur in previous nonlinear numerical simulations including frictional effects. This suggests that trapped lee wave drag, besides giving a relevant contribution to low-level drag exerted on the atmosphere, may also be useful to diagnose lee rotor formation.
Resumo:
The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.
Resumo:
The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.
Resumo:
Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.
Resumo:
During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.
Resumo:
Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.
Resumo:
The impact of El Nino–Southern Oscillation (ENSO) on atmospheric Kelvin waves and associated tropical convection is investigated using the ECMWF Re-Analysis, NOAA outgoing longwave radiation (OLR), and the analysis technique introduced in a previous study. It is found that the phase of ENSO has a substantial impact on Kelvin waves and associated convection over the equatorial central-eastern Pacific. El Nino (La Nina) events enhance (suppress) variability of the upper-tropospheric Kelvin wave and the associated convection there, both in extended boreal winter and summer. The mechanism of the impact is through changes in the ENSO-related thermal conditions and the ambient flow. In El Nino years, because of SST increase in the equatorial central-eastern Pacific, variability of eastward-moving convection, which is mainly associated with Kelvin waves, intensifies in the region. In addition, owing to the weakening of the equatorial eastern Pacific westerly duct in the upper troposphere in El Nino years, Kelvin waves amplify there. In La Nina years, the opposite occurs. However, the stronger westerly duct in La Nina winters allows more NH extratropical Rossby wave activity to propagate equatorward and force Kelvin waves around 200 hPa, partially offsetting the in situ weakening effect of the stronger westerlies on the waves. In general, in El Nino years Kelvin waves are more convectively and vertically coupled and propagate more upward into the lower stratosphere over the central-eastern Pacific. The ENSO impact in other regions is not clear, although in winter over the eastern Indian and western Pacific Oceans Kelvin waves and their associated convection are slightly weaker in El Nino than in La Nina years.
Resumo:
This article considers cinematic time in James Benning’s film, casting a glance (2007), in relation to its subject, Robert Smithson’s 1970 earthwork Spiral Jetty, and his film of the same name. The radicalism of Smithson’s thinking on time has been widely acknowledged, and his influence continues to pervade contemporary artistic practice. The relationship of Benning’s films with this legacy may appear somewhat oblique, given their apparent phenomenological rendition of ‘real time’. However, closer examination of Benning’s formal strategies reveals a more complex temporal construction, characterized by uncertain intervals that interrupt the folding of cinematic time into the flow of consciousness. Smithson’s film uses cinematic analogy to gesture towards vast reaches of geological time; Benning’s film creates a simulated timescale to evoke the short history of the earthwork itself. Smithson’s embrace of the entropic was a counter-cultural stance at the end of the1960s, but under the shadow of ecological disaster, this orientation has come to appear melancholy and romantic rather than radical. Benning’s film returns the jetty to anthropic time, but raises questions about the ways we inhabit time. His practice of working with ‘borrowed time’ is particularly suited to the cultural and historical moment of his later work.