85 resultados para Fenton reactions
Resumo:
The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Resumo:
A kinetic isotope effect (kD/kH) of 7.4 has been found for the reaction of chlorosilylene with trimethysilane (Me3SiD vs Me3SiH). Such a value can be accounted for by theoretical modelling, but only if an internal rearrangement of the initially form complex is included in the mechanism. This provides the first concrete evidence for such complexes.
Resumo:
Predominantly (E)-N-diphenylphosphinyl vinyl aziridines are prepared by a reaction of N-diphenylphosphinyl imines with α-bromoallyllithium in the presence of freshly fused ZnCl2. These aziridines undergo a ring-opening reaction with a variety of carbon and heteronucleophiles, in good yield, and generally with good regioselectivity.
Resumo:
Despite widespread belief that moods are affected by the menstrual cycle, researchers on emotion and reward have not paid much attention to the menstrual cycle until recently. However, recent research has revealed different reactions to emotional stimuli and to rewarding stimuli across the different phases of the menstrual cycle. The current paper reviews the emerging literature on how ovarian hormone fluctuation during the menstrual cycle modulates reactions to emotional stimuli and to reward. Behavioral and neuroimaging studies in humans suggest that estrogen and progesterone have opposing influences. That is, it appears that estrogen enhances reactions to reward, but progesterone counters the facilitative effects of estrogen and decreases reactions to rewards. In contrast, reactions to emotionally arousing stimuli (particularly negative stimuli) appear to be decreased by estrogen but enhanced by progesterone. Potential factors that can modulate the effects of the ovarian hormones (e.g., an inverse quadratic function of hormones’ effects; the structural changes of the hippocampus across the menstrual cycle) are also discussed.
Resumo:
The preparation and use of an azide-containing monolithic reactor is described for use in a flow chemistry device and in particular for conducting Curtius rearrangement reactions via acid chloride inputs.
Resumo:
Petasis and Ugi reactions are used successively without intermediate purification, effectively accomplishing a six-component reaction. The examined reactions are transferred from traditional batch reactors to an automated continuous flow microreactor setup, where optimization and kinetic analyses are performed, proposed mechanisms evaluated, and rate-limiting steps determined.
Resumo:
The combined application of neutron reflectometry (NR) and ellipsometry to determine the oxidation kinetics of organic monolayers at the air–water interface is described for the first time. This advance was possible thanks to a new miniaturised reaction chamber that is compatible with the two techniques and has controlled gas delivery. The rate coefficient for the oxidation of methyl oleate monolayers by gas-phase O3 determined using NR is (5.4 ± 0.6) × 10−10 cm2 per molecule per s, which is consistent with the value reported in the literature but is now better constrained. This highlights the potential for the investigation of faster atmospheric reactions in future studies. The rate coefficient determined using ellipsometry is (5.0 ± 0.9) × 10−10 cm2 per molecule per s, which indicates the potential of this more economical, laboratory-based technique to be employed in parallel with NR. In this case, temporal fluctuations in the optical signal are attributed to the mobility of islands of reaction products. We outline how such information may provide critical missing information in the identification of transient reaction products in a range of atmospheric surface reactions in the future.