70 resultados para intensity modulated sensors
Resumo:
The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.
Resumo:
Joint attention (JA) and spontaneous facial mimicry (SFM) are fundamental processes in social interactions, and they are closely related to empathic abilities. When tested independently, both of these processes have been usually observed to be atypical in individuals with autism spectrum conditions (ASC). However, it is not known how these processes interact with each other in relation to autistic traits. This study addresses this question by testing the impact of JA on SFM of happy faces using a truly interactive paradigm. Sixty-two neurotypical participants engaged in gaze-based social interaction with an anthropomorphic, gaze-contingent virtual agent. The agent either established JA by initiating eye contact or looked away, before looking at an object and expressing happiness or disgust. Eye tracking was used to make the agent's gaze behavior and facial actions contingent to the participants' gaze. SFM of happy expressions was measured by Electromyography (EMG) recording over the Zygomaticus Major muscle. Results showed that JA augments SFM in individuals with low compared with high autistic traits. These findings are in line with reports of reduced impact of JA on action imitation in individuals with ASC. Moreover, they suggest that investigating atypical interactions between empathic processes, instead of testing these processes individually, might be crucial to understanding the nature of social deficits in autism
Resumo:
The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.
Resumo:
This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.
Resumo:
Lightning flash rates, RL, are modulated by corotating interaction regions (CIRs) and the polarity of the heliospheric magnetic field (HMF) in near-Earth space. As the HMF polarity reverses at the heliospheric current sheet (HCS), typically within a CIR, these phenomena are likely related. In this study, RL is found to be significantly enhanced at the HCS and at 27 days prior/after. The strength of the enhancement depends on the polarity of the HMF reversal at the HCS. Near-Earth solar and galactic energetic particle fluxes are also ordered by HMF polarity, though the variations qualitatively differ from RL, with the main increase occurring prior to the HCS crossing. Thus, the CIR effect on lightning is either the result of compression/amplification of the HMF (and its subsequent interaction with the terrestrial system) or that energetic particle preconditioning of the Earth system prior to the HMF polarity change is central to solar wind lightning coupling mechanism.
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Self-report underpins our understanding of falls among people with Parkinson’s (PwP) as they largely happen unwitnessed at home. In this qualitative study, we used an ethnographic approach to investigate which in-home sensors, in which locations, could gather useful data about fall risk. Over six weeks, we observed five independently mobile PwP at high risk of falling, at home. We made field notes about falls (prior events and concerns) and recorded movement with video, Kinect, and wearable sensors. The three women and two men (aged 71 to 79 years) having moderate or severe Parkinson’s were dependent on others and highly sedentary. We most commonly noted balance protection, loss, and restoration during chair transfers, walks across open spaces and through gaps, turns, steps up and down, and tasks in standing (all evident walking between chair and stairs, e.g.). Our unobtrusive sensors were acceptable to participants: they could detect instability during everyday activity at home and potentially guide intervention. Monitoring the route between chair and stairs is likely to give information without invading the privacy of people at high risk of falling, with very limited mobility, who spend most of the day in their sitting rooms.
Resumo:
We have shown previously that particpants “at risk” of depression have decreased neural processing of reward suggesting this might be a neural biomarker for depression. However, how the neural signal related to subjective experiences of reward (wanting, liking, intensity) might differ as trait markers for depression, is as yet unknown. Using SPM8 parametric modulation analysis the neural signal related to the subjective report of wanting, liking and intensity was compared between 25 young people with a biological parent with depression (FH) and 25 age/gender matched controls. In a second study the neural signal related to the subjective report of wanting, liking and intensity was compared between 13 unmedicated recovered depressed (RD) patients and 14 healthy age/gender matched controls. The analysis revealed differences in the neural signal for wanting, liking and intensity ratings in the ventral striatum, dmPFC and caudate respectively in the RD group compared to controls . Despite no differences in the FH groups neural signal for wanting and liking there was a difference in the neural signal for intensity ratings in the dACC and anterior insula compared to controls. These results suggest that the neural substrates tracking the intensity but not the wanting or liking for rewards and punishers might be a trait marker for depression.