80 resultados para Multimedia retrieval
Resumo:
The fundamental principles of the teaching methodology followed for dyslexic learners evolve around the need for a multisensory approach, which would advocate repetition of learning tasks in an enjoyable way. The introduction of multimedia technologies in the field of education has supported the merging of new tools (digital camera, scanner) and techniques (sounds, graphics, animation) in a meaningful whole. Dyslexic learners are now given the opportunity to express their ideas using these alternative media and participate actively in the educational process. This paper discussed the preliminary findings of a single case study of two English monolingual dyslexic children working together to create an open-ended multimedia project on a laptop computer. The project aimed to examine whether and if the multimedia environment could enhance the dyslexic learners’ skills in composition. Analysis of the data has indicated that the technological facilities gave the children the opportunity to enhance the style and content of their work for a variety of audiences and to develop responsibilities connected to authorship.
Resumo:
This article shows how the solution to the promotion problem—the problem of locating the optimal level of advertising in a downstream market—can be derived simply, empirically, and robustly through the application of some simple calculus and Bayesian econometrics. We derive the complete distribution of the level of promotion that maximizes producer surplus and generate recommendations about patterns as well as levels of expenditure that increase net returns. The theory and methods are applied to quarterly series (1978:2S1988:4) on red meats promotion by the Australian Meat and Live-Stock Corporation. A slightly different pattern of expenditure would have profited lamb producers
Resumo:
The Retrieval-Induced Forgetting (RIF) paradigm includes three phases: (a) study/encoding of category exemplars, (b) practicing retrieval of a sub-set of those category exemplars, and (c) recall of all exemplars. At the final recall phase, recall of items that belong to the same categories as those items that undergo retrieval-practice, but that do not undergo retrieval-practice, is impaired. The received view is that this is because retrieval of target category-exemplars (e.g., ‘Tiger’ in the category Four-legged animal) requires inhibition of non-target category-exemplars (e.g., ‘Dog’ and ‘Lion’) that compete for retrieval. Here, we used the RIF paradigm to investigate whether ignoring auditory items during the retrieval-practice phase modulates the inhibitory process. In two experiments, RIF was present when retrieval-practice was conducted in quiet and when conducted in the presence of spoken words that belonged to a category other than that of the items that were targets for retrieval-practice. In contrast, RIF was abolished when words that either were identical to the retrieval-practice words or were only semantically related to the retrieval-practice words were presented as background speech. The results suggest that the act of ignoring speech can reduce inhibition of the non-practiced category-exemplars, thereby eliminating RIF, but only when the spoken words are competitors for retrieval (i.e., belong to the same semantic category as the to-be-retrieved items).
Resumo:
We investigate the impact of captions on deaf and hearing perception of multimedia video clips. We measure perception using a parameter called Quality of Perception (QoP), which encompasses not only a user's satisfaction with multimedia clips, but also his/her ability to perceive, synthesise and analyse the informational content of such presentations. By studying perceptual diversity, it is our aim to identify trends that will help future implementation of adaptive multimedia technologies. Results show that although hearing level has a significant affect on information assimilation, the effect of captions is not significant on the objective level of information assimilated. Deaf participants predict that captions significantly improve their level of information assimilation, although no significant objective improvement was measured. The level of enjoyment is unaffected by a participant’s level of hearing or use of captions.
Resumo:
The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues. However, limited work has been done examining the 3-way interaction between use of equipment, user perceptual quality and quality of service. Our work measures user perceptual quality with the quality of perception (QoP) metrics which comprises levels of informational transfer (objective) and user satisfaction (subjective) when users are presented with multimedia video clips at three different frame rates, using four different display devices. Finally, our results will show that variation in frame-rate does not impact a user’s level of information assimilation (IA), however, does impact a users’ perception of multimedia video ‘quality’.
Resumo:
The absorption coefficient of a substance distributed as discrete particles in suspension is less than that of the same material dissolved uniformly in a medium—a phenomenon commonly referred to as the flattening effect. The decrease in the absorption coefficient owing to flattening effect depends on the concentration of the absorbing pigment inside the particle, the specific absorption coefficient of the pigment within the particle, and on the diameter of the particle, if the particles are assumed to be spherical. For phytoplankton cells in the ocean, with diameters ranging from less than 1 µm to more than 100 µm, the flattening effect is variable, and sometimes pronounced, as has been well documented in the literature. Here, we demonstrate how the in vivo absorption coefficient of phytoplankton cells per unit concentration of its major pigment, chlorophyll a, can be used to determine the average cell size of the phytoplankton population. Sensitivity analyses are carried out to evaluate the errors in the estimated diameter owing to potential errors in the model assumptions. Cell sizes computed for field samples using the model are compared qualitatively with indirect estimates of size classes derived from high performance liquid chromatography data. Also, the results are compared quantitatively against measurements of cell size in laboratory cultures. The method developed is easy-to-apply as an operational tool for in situ observations, and has the potential for application to remote sensing of ocean colour data.
Resumo:
Criteria are proposed for evaluating sea surface temperature (SST) retrieved from satellite infra-red imagery: bias should be small on regional scales; sensitivity to atmospheric humidity should be small; and sensitivity of retrieved SST to surface temperature should be close to 1 K K−1. Their application is illustrated for non-linear sea surface temperature (NLSST) estimates. 233929 observations from the Advanced Very High Resolution Radiometer (AVHRR) on Metop-A are matched with in situ data and numerical weather prediction (NWP) fields. NLSST coefficients derived from these matches have regional biases from −0.5 to +0.3 K. Using radiative transfer modelling we find that a 10% increase in humidity alone can change the retrieved NLSST by between −0.5 K and +0.1 K. A 1 K increase in SST changes NLSST by <0.5 K in extreme cases. The validity of estimates of sensitivity by radiative transfer modelling is confirmed empirically.
Resumo:
We present a new coefficient-based retrieval scheme for estimation of sea surface temperature (SST) from the Along Track Scanning Radiometer (ATSR) instruments. The new coefficients are banded by total column water vapour (TCWV), obtained from numerical weather prediction analyses. TCWV banding reduces simulated regional retrieval biases to < 0.1 K compared to biases ~ 0.2 K for global coefficients. Further, detailed treatment of the instrumental viewing geometry reduces simulated view-angle related biases from ~ 0.1 K down to < 0.005 K for dual-view retrievals using channels at 11 and 12 μm. A novel analysis of trade-offs related to the assumed noise level when defining coefficients is undertaken, and we conclude that adding a small nominal level of noise (0.01 K) is optimal for our purposes. When applied to ATSR observations, some inter-algorithm biases appear as TCWV-related differences in SSTs estimated from different channel combinations. The final step in coefficient determination is to adjust the offset coefficient in each TCWV band to match results from a reference algorithm. This reference uses the dual-view observations of 3.7 and 11 μm. The adjustment is independent of in situ measurements, preserving independence of the retrievals. The choice of reference is partly motivated by uncertainty in the calibration of the 12 μm of Advanced ATSR. Lastly, we model the sensitivities of the new retrievals to changes to TCWV and changes in true SST, confirming that dual-view SSTs are most appropriate for climatological applications
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.
Resumo:
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).
Resumo:
Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results.
Resumo:
Retrieving a subset of items can cause the forgetting of other items, a phenomenon referred to as retrieval-induced forgetting. According to some theorists, retrieval-induced forgetting is the consequence of an inhibitory mechanism that acts to reduce the accessibility of non-target items that interfere with the retrieval of target items. Other theorists argue that inhibition is unnecessary to account for retrieval-induced forgetting, contending instead that the phenomenon can be best explained by non-inhibitory mechanisms, such as strength-based competition or blocking. The current paper provides the first major meta-analysis of retrieval-induced forgetting, conducted with the primary purpose of quantitatively evaluating the multitude of findings that have been used to contrast these two theoretical viewpoints. The results largely supported inhibition accounts, but also provided some challenging evidence, with the nature of the results often varying as a function of how retrieval-induced forgetting was assessed. Implications for further research and theory development are discussed.
Resumo:
The present study examined how achievement goals affect retrieval-induced forgetting. Researchers have suggested that mastery-approach goals (i.e., developing one’s own competence) promote a relational encoding, whereas performance-approach goals (i.e., demonstrating one’s ability in comparison to others) promote item-specific encoding. These different encoding processes may affect the degree to which participants integrate the exemplars within a category and, as a result, we expected that retrieval-induced forgetting may be reduced or eliminated under mastery-approach goals. Three experiments were conducted using a retrieval-practice paradigm with different stimuli, where participants’ achievement goals were manipulated through brief written instructions. A meta-analysis that synthesized the results of the three experiments showed that retrieval-induced forgetting was not statistically significant in the mastery-approach goal condition, whereas it was statistically significant in the performance-approach goal condition. These results suggest that mastery-approach goals eliminate retrieval-induced forgetting, but performance-approach goals do not, demonstrating that motivation factors can influence inhibition and forgetting.