85 resultados para Mega-event
Resumo:
The Cévennes–Vivarais Mediterranean Hydrometeorological Observatory (OHM-CV) is a research initiative aimed at improving the understanding and modeling of the Mediterranean intense rain events that frequently result in devastating flash floods in southern France. A primary objective is to bring together the skills of meteorologists and hydrologists, modelers and instrumentalists, researchers and practitioners, to cope with these rather unpredictable events. In line with previously published flash-flood monographs, the present paper aims at documenting the 8–9 September 2002 catastrophic event, which resulted in 24 casualties and an economic damage evaluated at 1.2 billion euros (i.e., about 1 billion U.S. dollars) in the Gard region, France. A description of the synoptic meteorological situation is first given and shows that no particular precursor indicated the imminence of such an extreme event. Then, radar and rain gauge analyses are used to assess the magnitude of the rain event, which was particularly remarkable for its spatial extent with rain amounts greater than 200 mm in 24 h over 5500 km2. The maximum values of 600–700 mm observed locally are among the highest daily records in the region. The preliminary results of the postevent hydrological investigation show that the hydrologic response of the upstream watersheds of the Gard and Vidourle Rivers is consistent with the marked space–time structure of the rain event. It is noteworthy that peak specific discharges were very high over most of the affected areas (5–10 m3 s−1 km−2) and reached locally extraordinary values of more than 20 m3 s−1 km−2. A preliminary analysis indicates contrasting hydrological behaviors that seem to be related to geomorphological factors, notably the influence of karst in part of the region. An overview of the ongoing meteorological and hydrological research projects devoted to this case study within the OHM-CV is finally presented.
Resumo:
Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.
Resumo:
Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.
Resumo:
It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.
Resumo:
We present a detailed investigation of a magnetospheric flux transfer event (FTE) seen by the Active Magnetospheric Tracer Explorer (AMPTE) UKS and IRM satellites around 1046 UT on October 28, 1984. This event has been discussed many times previously in the literature and has been cited as support for a variety of theories of FTE formation. We make use of a model developed to reproduce ion precipitations seen in the cusp ionosphere. The analysis confirms that the FTE is well explained as a brief excursion into an open low-latitude boundary layer (LLBL), as predicted by two theories of magnetospheric FTEs: namely, that they are bulges in the open LLBL due to reconnection rate enhancements or that they are indentations of the magnetopause by magnetosheath pressure increases (but in the presence of ongoing steady reconnection). The indentation of the inner edge of the open LLBL that these two models seek to explain is found to be shallow for this event. The ion model reproduces the continuous evolution of the ion distribution function between the sheath-like population at the event center and the surrounding magnetospheric populations; it also provides an explanation of the high-pressure core of the event as comprising field lines that were reconnected considerably earlier than those that are draped over it to give the event boundary layer. The magnetopause transition parameter is used to isolate a field rotation on the boundaries of the core, which is subjected to the tangential stress balance test. The test identifies this to be a convecting structure, which is neither a rotational discontinuity (RD) nor a contact discontinuity, but could possibly be a slow shock. In addition, evidence for ion reflection off a weak RD on the magnetospheric side of this structure is found. The event structure is consistent in many ways with features predicted for the open LLBL by analytic MHD theories and by MHD and hybrid simulations. The de Hoffman-Teller velocity of the structure is significantly different from that of the magnetosheath flow, indicating that it is not an indentation caused by a high-pressure pulse in the sheath but is consistent with the motion of newly opened field lines (different from the sheath flow because of the magnetic tension force) deduced from the best fit to the ion data. However, we cannot here rule out the possibility that the sheath flow pattern has changed in the long interval between the two satellites observing the FTE and subsequently emerging into the magnetosheath; thus this test is not conclusive in this particular case. Analysis of the fitted elapsed time since reconnection shows that the core of the event was reconnected in one pulse and the event boundary layer was reconnected in a subsequent pulse. Between these two pulses is a period of very low (but nonzero) reconnection rate, which lasts about 14 mins. Thus the analysis supports, but does not definitively verify, the concept that the FTE is a partial passage into an open LLBL caused by a traveling bulge in that layer produced by a pulse in reconnection rate.
Resumo:
We analyze of ion populations observed by the NOAA-12 satellite within dayside auroral transients. The data are matched with an open magnetopause model which allows for the transmission of magnetosheath ions across one or both of the two Alfvén waves which emanate from the magnetopause reconnection site. It also allows for reflection and acceleration of ions of magnetospheric origin by these waves. From the good agreement found between the model and the observations, we propose that the events and the low-latitude boundary precipitation are both on open field lines.
Resumo:
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.
Resumo:
Traditionally, the cusp has been described in terms of a time-stationary feature of the magnetosphere which allows access of magnetosheath-like plasma to low altitudes. Statistical surveys of data from low-altitude spacecraft have shown the average characteristics and position of the cusp. Recently, however, it has been suggested that the ionospheric footprint of flux transfer events (FTEs) may be identified as variations of the “cusp” on timescales of a few minutes. In this model, the cusp can vary in form between a steady-state feature in one limit and a series of discrete ionospheric FTE signatures in the other limit. If this time-dependent cusp scenario is correct, then the signatures of the transient reconnection events must be able, on average, to reproduce the statistical cusp occurrence previously determined from the satellite observations. In this paper, we predict the precipitation signatures which are associated with transient magnetopause reconnection, following recent observations of the dependence of dayside ionospheric convection on the orientation of the IMF. We then employ a simple model of the longitudinal motion of FTE signatures to show how such events can easily reproduce the local time distribution of cusp occurrence probabilities, as observed by low-altitude satellites. This is true even in the limit where the cusp is a series of discrete events. Furthermore, we investigate the existence of double cusp patches predicted by the simple model and show how these events may be identified in the data.
Resumo:
Learning to talk about motion in a second language is very difficult because it involves restructuring deeply entrenched patterns from the first language (Slobin 1996). In this paper we argue that statistical learning (Saffran et al. 1997) can explain why L2 learners are only partially successful in restructuring their second language grammars. We explore to what extent L2 learners make use of two mechanisms of statistical learning, entrenchment and pre-emption (Boyd and Goldberg 2011) to acquire target-like expressions of motion and retreat from overgeneralisation in this domain. Paying attention to the frequency of existing patterns in the input can help learners to adjust the frequency with which they use path and manner verbs in French but is insufficient to acquire the boundary crossing constraint (Slobin and Hoiting 1994) and learn what not to say. We also look at the role of language proficiency and exposure to French in explaining the findings.
Resumo:
The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic–euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. This general pattern is contrasted by the data of Gorgo a Cerbara, where the sediments deposited during the OAE 1a interval show P-enrichments (mainly authigenic P). This is associated with maxima in TOC values and Corg:Ptot ratios, suggesting that a part of the remobilized P was trapped in the sediments and as such prevented from returning to the water column.
Resumo:
The United Nations Framework Convention on Climate Change (UNFCCC) has established the Warsaw International Mechanism (WIM) to deal with loss and damage associated with climate change impacts, including extreme events, in developing countries. It is not yet known whether events will need to be attributed to anthropogenic climate change to be considered under the WIM. Attribution is possible for some extreme events- a climate model assessment can estimate how greenhouse gas emissions have affected the likelihood of their occurrence. Dialogue between scientists and stakeholders is required to establish whether, and how, this science could play a role in the WIM.