90 resultados para Feedback Control Loop


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) is used to input/output linearize a control affine system in the globally linearizing control (GLC) structure. The network is trained as a part of a closed loop that involves a PI controller, the goal is to use the network, as a dynamic feedback, to cancel the nonlinear terms of the plant. The stability of the configuration is guarantee if the network and the plant are asymptotically stable and the linearizing input is bounded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main limitation of linearization theory that prevents its application in practical problems is the need for an exact knowledge of the plant. This requirement is eliminated and it is shown that a multilayer network can synthesise the state feedback coefficients that linearize a nonlinear control affine plant. The stability of the linearizing closed loop can be guaranteed if the autonomous plant is asymptotically stable and the state feedback is bounded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Medication errors are common in primary care and are associated with considerable risk of patient harm. We tested whether a pharmacist-led, information technology-based intervention was more effective than simple feedback in reducing the number of patients at risk of measures related to hazardous prescribing and inadequate blood-test monitoring of medicines 6 months after the intervention. Methods: In this pragmatic, cluster randomised trial general practices in the UK were stratified by research site and list size, and randomly assigned by a web-based randomisation service in block sizes of two or four to one of two groups. The practices were allocated to either computer-generated simple feedback for at-risk patients (control) or a pharmacist-led information technology intervention (PINCER), composed of feedback, educational outreach, and dedicated support. The allocation was masked to general practices, patients, pharmacists, researchers, and statisticians. Primary outcomes were the proportions of patients at 6 months after the intervention who had had any of three clinically important errors: non-selective non-steroidal anti-inflammatory drugs (NSAIDs) prescribed to those with a history of peptic ulcer without co-prescription of a proton-pump inhibitor; β blockers prescribed to those with a history of asthma; long-term prescription of angiotensin converting enzyme (ACE) inhibitor or loop diuretics to those 75 years or older without assessment of urea and electrolytes in the preceding 15 months. The cost per error avoided was estimated by incremental cost-eff ectiveness analysis. This study is registered with Controlled-Trials.com, number ISRCTN21785299. Findings: 72 general practices with a combined list size of 480 942 patients were randomised. At 6 months’ follow-up, patients in the PINCER group were significantly less likely to have been prescribed a non-selective NSAID if they had a history of peptic ulcer without gastroprotection (OR 0∙58, 95% CI 0∙38–0∙89); a β blocker if they had asthma (0∙73, 0∙58–0∙91); or an ACE inhibitor or loop diuretic without appropriate monitoring (0∙51, 0∙34–0∙78). PINCER has a 95% probability of being cost eff ective if the decision-maker’s ceiling willingness to pay reaches £75 per error avoided at 6 months. Interpretation: The PINCER intervention is an effective method for reducing a range of medication errors in general practices with computerised clinical records. Funding: Patient Safety Research Portfolio, Department of Health, England.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual telepresence seeks to extend existing teleoperative capability by supplying the operator with a 3D interactive view of the remote environment. This is achieved through the use of a stereo camera platform which, through appropriate 3D display devices, provides a distinct image to each eye of the operator, and which is slaved directly from the operator's head and eye movements. However, the resolution within current head mounted displays remains poor, thereby reducing the operator's visual acuity. This paper reports on the feasibility of incorporation of eye tracking to increase resolution and investigates the stability and control issues for such a system. Continuous domain and discrete simulations are presented which indicates that eye tracking provides a stable feedback loop for tracking applications, though some empirical testing (currently being initiated) of such a system will be required to overcome indicated stability problems associated with micro saccades of the human operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active robot force control requires some form of dynamic inner loop control for stability. The author considers the implementation of position-based inner loop control on an industrial robot fitted with encoders only. It is shown that high gain velocity feedback for such a robot, which is effectively stationary when in contact with a stiff environment, involves problems beyond the usual caveats on the effects of unknown environment stiffness. It is shown that it is possible for the controlled joint to become chaotic at very low velocities if encoder edge timing data are used for velocity measurement. The results obtained indicate that there is a lower limit on controlled velocity when encoders are the only means of joint measurement. This lower limit to speed is determined by the desired amount of loop gain, which is itself determined by the severity of the nonlinearities present in the drive system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental and theoretical comparison is made of force control performance with different types of innerloop joint servoing techniques. The problem of disturbance rejection and sensitivity to plant dynamics variations (robustness) is addressed. Position, velocity, strain gauge derived joint torque, and current servos are designed and implemented on a specially instrumented industrial robot, and the end-effector force feedback performances achieved are compared. Joint strain derived torque servoing is found to provide the best overall robust force control performance. Experimental results of the robust hard-on-hard contact achieved with the novel force controller implementation based on joint torque sensing are provided. Conclusions are drawn on the force control performance achievable on a geared robot given the joint servoing technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some necessary and sufficient conditions for closed-loop eigenstructure assignment by output feedback in time-invariant linear multivariable control systems are presented. A simple condition on a square matrix necessary and sufficient for it to be the closed-loop plant matrix of a given system with some output feedback is the basis of the paper. Some known results on entire eigenstructure assignment are deduced from this. The concept of an inner inverse of a matrix is employed to obtain a condition concerning the assignment of an eigenstructure consisting of the eigenvalues and a mixture of left and right eigenvectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feedback design for a second-order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second-order closed loop system but also that the system is robust, or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured perturbations. Numerically reliable methods for solving the structured generalized linear problem are developed that take advantage of the special properties of the system in order to minimize the computational work required. In this part of the work we treat the case where the leading coefficient matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In a second part, we will examine the case where the open loop matrix polynomial is not necessarily regular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the regularization problem for linear, constant coefficient descriptor systems Ex' = Ax+Bu, y1 = Cx, y2 = Γx' by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and E+BGΓ has a desired rank, i.e., there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedback gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].