97 resultados para Coalescent estimates
Resumo:
Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.
Resumo:
Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.
New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco
Resumo:
Marine and aeolian Quaternary sediments from Casablanca, Morocco were dated using the optically stimulated luminescence (OSL) signal of quartz grains. These sediments form part of an extensive succession spanning the Pleistocene, and contain a rich faunal and archaeological record, including an Acheulian lithic assemblage from before the Brunhes–Matayama boundary, and a Homo erectus jaw from younger cave deposits. Sediment samples from the sites of Reddad Ben Ali, Oulad J’mel, Sidi Abderhamane and Thomas Quarries have been dated, in order to assess the upper limits of OSL. The revision of previously measured mammalian tooth enamel electron spin resonance (ESR) dates from the Grotte des Rhinocéros, Oulad Hamida Quarry 1, incorporating updated environmental dose rate measurements and attenuation calculations, also provide chronological constraint for the archaeological material preserved at Thomas Quarries. Several OSL age estimates extend back to around 500,000 years, with a single sample providing an OSL age close to 1 Ma in magnetically reversed sediments. These luminescence dates are some of the oldest determined, and their reliability is assessed using both internal criteria based on stratigraphic consistency, and external lithostratigraphic, morphostratigraphic and independent chronological constraints. For most samples, good internal agreement is observed using single aliquot regenerative-dose OSL measurements, while multiple aliquot additive-dose measurements generally have poorer resolution and consistency. Novel slow-component and component-resolved OSL approaches applied to four samples provide significantly enhanced dating precision, and an examination of the degree of signal zeroing at deposition. A comparison of the OSL age estimates with the updated ESR dates and one U-series date demonstrate that this method has great potential for providing reliable age estimates for sediments of this antiquity. We consider the cause of some slight age inversion observed at Thomas Quarries, and provide recommendations for further luminescence dating within this succession.
Resumo:
The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct for model departures from observed aerosols. The reanalysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003–2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing is −0.7±0.3Wm−2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of −0.4±0.3Wm−2. The best estimate of globally-averaged, all-sky first indirect radiative forcing is −0.6±0.4Wm−2. Its standard deviation accounts for uncertainties in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by −0.1 and −2.0Wm−2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol changes are required.
Resumo:
In their contribution to PNAS, Penner et al. (1) used a climate model to estimate the radiative forcing by the aerosol first indirect effect (cloud albedo effect) in two different ways: first, by deriving a statistical relationship between the logarithm of cloud droplet number concentration, ln Nc, and the logarithm of aerosol optical depth, ln AOD (or the logarithm of the aerosol index, ln AI) for present-day and preindustrial aerosol fields, a method that was applied earlier to satellite data (2), and, second, by computing the radiative flux perturbation between two simulations with and without anthropogenic aerosol sources. They find a radiative forcing that is a factor of 3 lower in the former approach than in the latter [as Penner et al. (1) correctly noted, only their “inline” results are useful for the comparison]. This study is a very interesting contribution, but we believe it deserves several clarifications.
Resumo:
Aerosol sources, transport, and sinks are simulated, and aerosol direct radiative effects are assessed over the Indian Ocean for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during January to March 1999 using the Laboratoire de Me´te´orologie Dynamique (LMDZT) general circulation model. The model reproduces the latitudinal gradient in aerosol mass concentration and optical depth (AOD). The model-predicted aerosol concentrations and AODs agree reasonably well with measurements but are systematically underestimated during high-pollution episodes, especially in the month of March. The largest aerosol loads are found over southwestern China, the Bay of Bengal, and the Indian subcontinent. Aerosol emissions from the Indian subcontinent are transported into the Indian Ocean through either the west coast or the east coast of India. Over the INDOEX region, carbonaceous aerosols are the largest contributor to the estimated AOD, followed by sulfate, dust, sea salt, and fly ash. During the northeast winter monsoon, natural and anthropogenic aerosols reduce the solar flux reaching the surface by 25 W m�2, leading to 10–15% less insolation at the surface. A doubling of black carbon (BC) emissions from Asia results in an aerosol single-scattering albedo that is much smaller than in situ measurements, reflecting the fact that BC emissions are not underestimated in proportion to other (mostly scattering) aerosol types. South Asia is the dominant contributor to sulfate aerosols over the INDOEX region and accounts for 60–70% of the AOD by sulfate. It is also an important but not the dominant contributor to carbonaceous aerosols over the INDOEX region with a contribution of less than 40% to the AOD by this aerosol species. The presence of elevated plumes brings significant quantities of aerosols to the Indian Ocean that are generated over Africa and Southeast and east Asia.
Resumo:
The global cycle of multicomponent aerosols including sulfate, black carbon (BC),organic matter (OM), mineral dust, and sea salt is simulated in the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZT GCM). The seasonal open biomass burning emissions for simulation years 2000–2001 are scaled from climatological emissions in proportion to satellite detected fire counts. The emissions of dust and sea salt are parameterized online in the model. The comparison of model-predicted monthly mean aerosol optical depth (AOD) at 500 nm with Aerosol Robotic Network (AERONET) shows good agreement with a correlation coefficient of 0.57(N = 1324) and 76% of data points falling within a factor of 2 deviation. The correlation coefficient for daily mean values drops to 0.49 (N = 23,680). The absorption AOD (ta at 670 nm) estimated in the model is poorly correlated with measurements (r = 0.27, N = 349). It is biased low by 24% as compared to AERONET. The model reproduces the prominent features in the monthly mean AOD retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS). The agreement between the model and MODIS is better over source and outflow regions (i.e., within a factor of 2).There is an underestimation of the model by up to a factor of 3 to 5 over some remote oceans. The largest contribution to global annual average AOD (0.12 at 550 nm) is from sulfate (0.043 or 35%), followed by sea salt (0.027 or 23%), dust (0.026 or 22%),OM (0.021 or 17%), and BC (0.004 or 3%). The atmospheric aerosol absorption is predominantly contributed by BC and is about 3% of the total AOD. The globally and annually averaged shortwave (SW) direct aerosol radiative perturbation (DARP) in clear-sky conditions is �2.17 Wm�2 and is about a factor of 2 larger than in all-sky conditions (�1.04 Wm�2). The net DARP (SW + LW) by all aerosols is �1.46 and �0.59 Wm�2 in clear- and all-sky conditions, respectively. Use of realistic, less absorbing in SW, optical properties for dust results in negative forcing over the dust-dominated regions.
Resumo:
Simulated multi-model “diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated “host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47Wm−2 and the inter-model standard deviation is 0.55Wm−2, corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04Wm−2, and the standard deviation increases to 1.01W−2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45Wm−2 (8 %) clear-sky and 0.62Wm−2 (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the Aero- Com Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11Wm−2 in the AeroCom Direct Radiative Effect experiment.
Resumo:
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying fm is then implemented into a method of estimating ta and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated ta by about 20% over global ocean, with the overestimation up to �45% in some regions and seasons. The 7-year (2001–2007) global ocean average ta is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
Resumo:
The INSIG2 rs7566605 polymorphism was identified for obesity (BMI> or =30 kg/m(2)) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status ('healthy population', HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I(2) measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I(2) measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI> or =32.5, 35.0, 37.5, 40.0 kg/m(2) versus BMI<25 kg/m(2)) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far.
Resumo:
The direct radiative forcing of 65 chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, halons, iodoalkanes, chloroalkanes, bromoalkanes, perfluorocarbons and nonmethane hydrocarbons has been evaluated using a consistent set of infrared absorption cross sections. For the radiative transfer models, both line-by-line and random band model approaches were employed for each gas. The line-by-line model was first validated against measurements taken by the Airborne Research Interferometer Evaluation System (ARIES) of the U.K. Meteorological Office; the computed spectrally integrated radiance of agreed to within 2% with experimental measurements. Three model atmospheres, derived from a three-dimensional climatology, were used in the radiative forcing calculations to more accurately represent hemispheric differences in water vapor, ozone concentrations, and cloud cover. Instantaneous, clear-sky radiative forcing values calculated by the line-by-line and band models were in close agreement. The band model values were subsequently modified to ensure exact agreement with the line-by-line model values. Calibrated band model radiative forcing values, for atmospheric profiles with clouds and using stratospheric adjustment, are reported and compared with previous literature values. Fourteen of the 65 molecules have forcings that differ by more than 15% from those in the World Meteorological Organization [1999] compilation. Eleven of the molecules have not been reported previously. The 65-molecule data set reported here is the most comprehensive and consistent database yet available to evaluate the relative impact of halocarbons and hydrocarbons on climate change.
Resumo:
Two different TAMSAT (Tropical Applications of Meteorological Satellites) methods of rainfall estimation were developed for northern and southern Africa, based on Meteosat images. These two methods were used to make rainfall estimates for the southern rainy season from October 1995 to April 1996. Estimates produced by both TAMSAT methods and estimates produced by the CPC (Climate Prediction Center) method were then compared with kriged data from over 800 raingauges in southern Africa. This shows that operational TAMSAT estimates are better over plateau regions, with 59% of estimates within one standard error (s.e.) of the kriged rainfall. Over mountainous regions the CPC approach is generally better, although all methods underestimate and give only 40% of estimates within 1 s.e. The two TAMSAT methods show little difference across a whole season, but when looked at in detail the northern method gives unsatisfactory calibrations. The CPC method does have significant overall improvements by building in real-time raingauge data, but only where sufficient raingauges are available.