77 resultados para BIODIVERSITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in landscape composition and structure may impact the conservation and management of protected areas. Species that depend on specific habitats are at risk of extinction when these habitats are degraded or lost. Designing robust methods to evaluate landscape composition will assist decision- and policy-making in emerging landscapes. This paper describes a rapid assessment methodology aimed at evaluating landcover quality for birds, plants, butterflies and bees around seven UK Natura 2000 sites. An expert panel assigned quality values to standard Coordination of Information on the Environment (CORINE) landcover classes for each taxonomic group. Quality was assessed based on historical (1950, 1990), current (2000) and future (2030) land-cover data, the last projected using three alternative scenarios: a growth applied strategy (GRAS), a business-as-might-beusual (BAMBU) scenario, and sustainable European development goal (SEDG) scenario. A quantitative quality index weighted the area of each land-cover parcel with a taxa-specific quality measure. Land parcels with high quality for all taxonomic groups were evaluated for temporal changes in area, size and adjacency. For all sites and taxonomic groups, the rate of deterioration of land-cover quality was greater between 1950 and 1990 than current rates or as modelled using the alternative future scenarios (2000– 2030). Model predictions indicated land-cover quality stabilized over time under the GRAS scenario, and was close to stable for the BAMBU scenario. The SEDG scenario suggested an ongoing loss of quality, though this was lower than the historical rate of c. 1% loss per decade. None of the future scenarios showed accelerated fragmentation, but rather increases in the area, adjacency and diversity of high quality land parcels in the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case study reports on the development of a bespoke mobile recording app for collating records of biodiversity sightings on a University campus. This innovative project was achieved through a multi-disciplinary partnership of staff and students. It is hoped that the app itself will benefit lecturers by streamlining data collection during teaching and learning activities, whilst engaging students and highlighting the wealth of diversity available on campus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their ‘resilience’) is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions-specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiversity has been defined as the totality of genes, species, and ecosystems that inhabit the earth with the field contributing to many aspects of our lives and livelihoods by providing us with food, drink, medicines and shelter, as well as contributing to improving our surrounding environment. Benefits include providing life services through improved horticultural production, improving the business and service of horticulture as well as our environment, as well as improving our health and wellbeing, and our social and cultural relationships. Threats to biodiversity can include fragmentation, degradation and deforestation of habitat, introduction of invasive and exotic species, climate change and extreme weather events, over-exploitation of our natural resources, hybridisation, genetic pollution/erosion and food security issues and human overpopulation. This chapter examines a series of examples that provide the dual aims of biodiversity conservation and horticultural production and service; namely organic horticultural cropping, turf management, and nature-based tourism, and ways of valuing biological biodiversity such as the payment of environmental services and bio-prospecting. Horticulture plays a major role in the preserving of biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many countries have conservation plans for threatened species, but such plans have generally been developed without taking into account the potential impacts of climate change. Here, we apply a decision framework, specifically developed to identify and prioritise climate change adaptation actions and demonstrate its use for 30 species threatened in the UK. Our aim is to assess whether government conservation recommendations remain appropriate under a changing climate. The species, associated with three different habitats (lowland heath, broadleaved woodland and calcareous grassland), were selected from a range of taxonomic groups (primarily moths and vascular plants, but also including bees, bryophytes, carabid beetles and spiders). We compare the actions identified for these threatened species by the decision framework with those included in existing conservation plans, as developed by the UK Government's statutory adviser on nature conservation. We find that many existing conservation recommendations are also identified by the decision framework. However, there are large differences in the spatial prioritisation of actions when explicitly considering projected climate change impacts. This includes recommendations for actions to be carried out in areas where species do not currently occur, in order to allow them to track movement of suitable conditions for their survival. Uncertainties in climate change projections are not a reason to ignore them. Our results suggest that existing conservation plans, which do not take into account potential changes in suitable climatic conditions for species, may fail to maximise species persistence. Comparisons across species also suggest a more habitat-focused approach could be adopted to enable climate change adaptation for multiple species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.