95 resultados para Aerial view


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Svalgaard and Cliver (2010) recently reported a consensus between the various reconstructions of the heliospheric field over recent centuries. This is a significant development because, individually, each has uncertainties introduced by instrument calibration drifts, limited numbers of observatories, and the strength of the correlations employed. However, taken collectively, a consistent picture is emerging. We here show that this consensus extends to more data sets and methods than reported by Svalgaard and Cliver, including that used by Lockwood et al. (1999), when their algorithm is used to predict the heliospheric field rather than the open solar flux. One area where there is still some debate relates to the existence and meaning of a floor value to the heliospheric field. From cosmogenic isotope abundances, Steinhilber et al. (2010) have recently deduced that the near-Earth IMF at the end of the Maunder minimum was 1.80 ± 0.59 nT which is considerably lower than the revised floor of 4nT proposed by Svalgaard and Cliver. We here combine cosmogenic and geomagnetic reconstructions and modern observations (with allowance for the effect of solar wind speed and structure on the near-Earth data) to derive an estimate for the open solar flux of (0.48 ± 0.29) × 1014 Wb at the end of the Maunder minimum. By way of comparison, the largest and smallest annual means recorded by instruments in space between 1965 and 2010 are 5.75 × 1014 Wb and 1.37 × 1014 Wb, respectively, set in 1982 and 2009, and the maximum of the 11 year running means was 4.38 × 1014 Wb in 1986. Hence the average open solar flux during the Maunder minimum is found to have been 11% of its peak value during the recent grand solar maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, the model spatial resolution required to represent flows through a typical street network often results in an impractical computational cost at the city scale. This paper presents the calibration and evaluation of a recently developed formulation of the LISFLOOD-FP model, which is more computationally efficient at these resolutions. Aerial photography was available for model evaluation on 3 days from the 24 to the 31 of July. The new formulation was benchmarked against the original version of the model at 20 and 40 m resolutions, demonstrating equally accurate simulation, given the evaluation data but at a 67 times faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in more accurate simulation of the floodplain drying dynamics compared with the coarse resolution models, although maximum inundation levels were simulated equally well at all resolutions tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View-based and Cartesian representations provide rival accounts of visual navigation in humans, and here we explore possible models for the view-based case. A visual “homing” experiment was undertaken by human participants in immersive virtual reality. The distributions of end-point errors on the ground plane differed significantly in shape and extent depending on visual landmark configuration and relative goal location. A model based on simple visual cues captures important characteristics of these distributions. Augmenting visual features to include 3D elements such as stereo and motion parallax result in a set of models that describe the data accurately, demonstrating the effectiveness of a view-based approach.

Relevância:

20.00% 20.00%

Publicador: